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Lemma	  [1]	  
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Model:
u = M(λ)

We are oftentimes interested in using computationally intense simulations to
compute statistical properties (moments, probabilities, etc.) for a quantity of
interest (QofI).

Error in P[q(λ) > T ] = discretization error + sampling error

Do we trust Monte Carlo to compute statistical properties given a small number
of samples?

One alternative is to use a surrogate model (polynomial chaos, stochastic collo-

cation, gaussian process, etc.).

Trade off: Smaller sampling error for a larger discretization error.

Do we trust surrogate models to compute statistical properties given (virtually)
unlimited samples?

We take the following approach:

• We compute a PC approximation of the forward problem.

• We compute a PC approximation of a properly defined adjoint problem.

• For each sample of the QofI, we sample the adjoint approximation and
produce an estimate of the error.

The goal is to estimate the error in samples of a quantity of interest computed
from a polynomial chaos (PC) approximation.

Polynomial	  Chaos	  Approxima#ons	  

Conclusions	  /	  Future	  Work	  

References	  

Numerical Results Case I: Random source parameters

Validating Accuracy of Estimates

Time λ Std Err Est u(x{1}, t) PC Err Est u(x{1}, t) Ratio

0.05 (0.25, 0.25) −1.094E − 02 −1.207E − 02 1.103
0.05 (0.75, 0.25) 2.142E − 03 2.144E − 03 1.001
0.05 (0.25, 0.75) 2.347E − 03 2.348E − 03 1.001
0.05 (0.75, 0.75) 1.439E − 03 1.466E − 03 1.019
0.05 (0.4, 0.375) 4.273E − 03 4.508E − 03 1.055
0.15 (0.25, 0.25) 5.754E − 03 5.812E − 03 1.010
0.15 (0.75, 0.25) −3.637E − 03 −3.670E − 03 1.009
0.15 (0.25, 0.75) −3.511E − 03 −3.553E − 03 1.012
0.15 (0.75, 0.75) 1.444E − 03 1.4376E − 03 0.996
0.15 (0.4, 0.375) 7.686E − 05 9.389E − 05 1.222

Table: Comparison of standard error estimates (third column) for quantity of interest
u(x{1}, t) at times t1 = 0.05 (first four rows) and t2 = 0.15 (last four rows) computed
for fixed values of λ in (21) (second column) to the new error estimates (fourth column)
computed by evaluating the polynomial chaos expansion of the error in the quantity of
interest at the given values of λ. The last column shows the ratio of the new error
estimates to the standard error estimates and shows values close to the desired value of
unity.
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Numerical Results Case II: Random model parameters

A q.of.i and the a posteriori estimate
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Figure: Left: 6
th
-order PC representation of u(x{5}, t) at time t = 0.05. Right: A

posteriori estimate of numerical error in 6
th
-order PC representation of u(x{5}, t) at time

t = 0.05. Observe that the numerical error estimate is consistently in the neighborhood

of 10% of the observed value.
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Parameter Value Parameter Value
Numerical Results Case II: Random model parameters

Validating Accuracy of Estimates

λ Std Err Est u(x{5}, t) PC Err Est u(x{5}, t) Ratio

0.50 0.22660 0.22667 1.00032
0.75 0.19693 0.19694 1.00006
1.00 0.17823 0.17823 1.00000
1.25 0.16520 0.16519 0.99996
1.50 0.15550 0.15548 0.99983

Table: Comparison of standard error estimates (second column) for quantity of interest
u(x{5}, t) at time t = 0.05 computed for fixed values of λ in (22) (first column) to the
new error estimates (third column) computed by evaluating the polynomial chaos
expansion of the error in the quantity of interest at the given values of λ. The last
column shows the ratio of the new error estimates to the standard error estimates and
shows values close to the desired value of unity.
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Truncate expansion at order p, giving the total number of terms,

P + 1 =
(d+ p)!

d!p!
.

Let {Ω,F , P} be a probability space.

Let Z(ω) be a random variable and let {Φi(Z)}∞i=1 be a set of
polynomials orthogonal w.r.t density of Z.

Model parameter as a random variable λ = Λ(ω) with finite variance,

Λ(ω) =
∞�

i=0

λiΦi(Z(w)), where λi =
�Λ,Φi�
�Φi,Φi�

.

Model for nonlinear stochastic diffusive transport:

� T

0
[(∂u/∂t, v)S + (A(x, t,λ)∇u,∇v)S + (g(x, t;u), v)S ] dt

Variational formulation for a fixed λ: Find u ∈ L
2([0, T ];H1(S)) s.t.

=

� T

0
(f(x, t,λ), v)S dt

for all v ∈ L
2([0, T ];H1(S)) with v(x, 0) = 0.






∂u
∂t −∇ · (A(x, t,λ)∇u) + g(x, t;u) = f(x, t,λ), x ∈ S, 0 < t ≤ T,

A∇u · n = 0, x ∈ ∂S, 0 < t ≤ T,

u(x, 0) = 0, x ∈ S,

where S is a convex polygonal domain.

for all v ∈ L
2([0, T ];H1(S)).

� T

0
(∂uk/∂t, v)S dt

+
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S

dt

=

� T

0
(fk(x, t), v)S dt

Seek u =
�P

k=0 uk(x, t)Φk(Z), such that for k = 0, 1, . . . , P ,

where g(u, U ;λ) =
� 1
0 ∂ug(x, t; su+ (1− s)U) ds.






−∂φ
∂t −∇ ·

�
AT (x, t,λ)∇φ

�
+ g(u, U ;λ)

T
φ = 0, x ∈ S, T > t ≥ 0,

AT∇φ · n = 0, x ∈ ∂S, T > t ≥ 0,

φ(x, T ) = ψ, x ∈ S,

The strong form of the adjoint for a fixed λ,

We follow standard steps (substitutions, integration-by-parts, etc.)
to derive the error representation:

(e(T,λ),ψ)S =(e(0;λ),φ(0;λ))S −
N�

n=1

�

In

(∂U(λ)/∂t,φ(λ))S dt

+
N�

n=2

([U(λ)] ,φ(λ))S +
N�

n=1

�

In

(f − g(U),φ(λ))S dt

−
N�

n=1

�

In

(A(λ)∇U(λ),∇φ(λ))S dt

We approximate φ using a PC expansion:

φ(x, t;λ) ≈
P�

i=0

φi(x, t)Φi(Z(ω)).

Let x(s) ∈ Rn solve the parameterized linear system,

for a given A(s) ∈ Rn × Rn and b(s) ∈ Rn.

A(s)x(s) = b(s), s ∈ Ω,

Let xN be a surrogate approximation and define, e(s) = x(s)− xN (s).

We assume the following point-wise error estimate holds,

�e(s)�L∞(Ω;l2(Rn)) ≤ C�1(N)

for some �1(N) ≥ 0.

Let φ(s) solve the adjoint problem,

AT (s)φ(s) = ψ, ∀s ∈ Ω.

At each ŝ ∈ Ω we derive the error representation:

�ψ, e(ŝ)� = �R(ŝ),φ(ŝ)�
= �R(ŝ),φM (ŝ)�+ �R(ŝ),φ(ŝ)− φM (ŝ)�

g(xN (s),φM (s)) = �ψ, xN (s)�+ �R(s),φM (s)� .

If the pointwise error in the adjoint solution satisfies,

then the pointwise error in the improved linear functional is
bounded by,

where C > 0 depends only on A(s).

�φ(s)− φM (s)�L∞(Ω;l2(Rn)) ≤ �2(M),

� �ψ, x(s)� − g(xN (s),φM (s))�L∞(Ω) ≤ C�1(N)�2(M),

Theorem	  [2]	  

Lemma	  [2]	  

• Statistical properties computed using numerical models have error due to

discretizations and sampling.

• High-fidelity models have reduced discretization error, but fewer samples

can be taken.

• Surrogate models constructed from high-fidelity simulations can be cheaply

sampled, but have larger discretization error.

• A posteriori error analysis can be used to estimate the error in these

samples.

• Future works includes an error analysis for coupled systems and an esti-

mation of the effect of measure transformations.

Let X and Y be Banach spaces and consider L : X → Y .

The adjoint operator L∗ : Y ∗ → X∗ is defined such that �Lx, y∗� = �x, L∗y∗�

Let x solve Lx = f , let x̃ ≈ x and define e = x− x̃ and R = f − Lx̃.

Let φ solve the adjoint problem, L∗φ = ψ.

We derive the error representation, �ψ, e� = �L∗φ, e� = �φ, Le� = �φ, R�.

The error analysis for nonlinear operators is handled by an appropriate lin-
earization and the extension to systems of equations is straightforward [3].
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In Table 2, we give several linear functionals, the numerical value of each

linear functional, the actual error in each functional, the a posteriori esti-

mates broken into two components as before, and finally the effectivity ratio.

In Figure 4 we show that adjoint solutions corresponding to ψ1 = 0 and

ψ1 ψ2 Value Error η1 η2 Effect.

1/100 0 7.3312E13 5.6029E9 5.3300E9 2.7284E8 0.9999
0 1/100 5.9482E2 1.3470E-2 1.3112E-2 3.5832E-4 1.0000

p(50; 10) 0 1.0526E14 2.6428E8 −1.6916E6 2.6608E8 1.0004

0 p(25, 10) 5.9763E2 1.4962E-2 1.2693E-2 2.2690E-3 0.9999

0 p(65, 10) 6.1128E2 1.3760E-2 1.0739E-2 3.0209E-3 0.9999

Table 2: Error estimates for a variety of QofI’s for the nonlinear model prob-

lem (35). The first two columns define the linear functionals, the third gives

the value of the linear functional of the finite element approximation, the

fourth gives the error in this functional value, the fifth gives the a posteriori

estimate of this error, and finally the sixth gives the effectivity ratio.

ψ2 = p(25, 20). In contrast to the example in Section 5.2, the error in a

quantity of interest involving only u1 depends on the approximation of u2

as indicated by η2 in the first and third rows in Table 2. This is clearly

due to the fact that the system is fully coupled. In addition, note that the

error in the average values, given by the first two rows of the table, depend

more on the approximation of u1 than that of u2. A similar statement can

be made for the (p(25, 10), u2) and (p(65, 10), u2). However, notice that the

error in (p(50, 10), u1) depends more on the approximation of u2 than that of

u1. This is emblematic of coupled systems, particularly nonlinear systems,

where different quantities of interest may require completely different (and

perhaps nonintuitive) discretizations for each component.

6 Error Analysis for Parameterized Linear Al-
gebraic Systems

Following [6], let x(s) ∈ Rn
satisfy the linear system of equations

A(s)x(s) = b(s), s ∈ Ω, (37)

24

Consider the coupled model for neutron diffusion, u1 and temperature, u2,






−∇ · (D(u2)∇u1) + (Σa(u2)− νΣf (u2))u1 = s, x ∈ Ω,

u1 = 0, x ∈ ∂Ω,

−∇ · (K∇u2) +Hu2 − EfνΣf (u2)u1 = Hu2,∞, x ∈ Ω,

K∇u2 · n = 0, x ∈ ∂Ω.

where

νΣf (u2) = 0.0162

�
u2,∞
u2

, Σa(u2) = 0.02

�
u2,∞
u2

, D(u2) = 2.2
�

u2

u2,∞
,

Let uh,1 and uh,2 be finite element approximations to u1 and u2 respectively.

We linearize the problem around uh = (uh,1, uh,2)T to obtain

J(uh)δ :=

�
L11(uh)δ1 + L12(uh)δ2
L21(uh)δ1 + L22(uh)δ2,

The adjoint operator is given by,

J(uh)
∗φ :=

�
L∗
11(uh)φ1 + L∗

21(uh)φ2

L∗
12(uh)φ1 + L∗

22(uh)φ2,
	  
	  
	  
	  

Table: The approximate value, error, and contributions to the error from the
neutron diffusion residual, η1, and from the temperature residual, η2, for a

variety of quantities of interest.

�
2 −s1

−s2 1

� �
x1(s)
x2(s)

�
=

�
1

�s3 − 1/3�

�
Consider the parameterized linear system,

where �·� is the ceiling operator and si ∈ [−1, 1].

Figure: High-order spectral approximation of the linear functional (left), the

improved linear functional (center), and the convergence rates for each (right).

Allows us to define an improved linear functional,

with S = [0, 1]2, T = 0.21, u(x, 0) = 0, s = 10 and σ = 0.1.

Random variable λ uniformly distributed on [0, 1]2.

Discretization: h = 0.1, ∆t = 0.005 and 6th−order PC expansion.

Consider the contaminant source problem2:

∂u

∂t
−∇ ·∇u =

s

2πσ2
exp

�
− |λ− x|2

2σ2

�
(1−H(t− 0.05))

Figure: Polynomial chaos approximation of the quantity of interest (left) and
the a posteriori error estimate (right).

Table: Comparison of the traditional error estimate with the error estimate
using the polynomial chaos approximation of the adjoint.

with S = [0, 1]2, T = 0.21, u(x, 0) = 0, s = 10 and σ = 0.1.

Discretization: h = 0.1, ∆t = 0.005 and 6th−order PC expansion.

∂u

∂t
−∇ ·A(x, t;λ)∇u =

s

2πσ2
exp

�
− |x− x|2

2σ2

�
(1−H(t− 0.05))

Consider the contaminant source problem:

Random variable λ uniformly distributed on [0.5, 1.5].

A(x, t;λ) =

�
λ exp(2 sin(2πx) cos(4πy) 0

0 exp(2 sin(4πy) + 2 cos(2πx)

�

Table: Comparison of the traditional error estimate with the error estimate
using the polynomial chaos approximation of the adjoint.

Figure: Polynomial chaos approximation of the quantity of interest (left) and
the a posteriori error estimate (right).

Not Computable Computable

Quantity of interest is x1(s).

Let φM be a PC approximation of φ.

Computable Higher Order

Consider the contaminant source problem:

The error in the statistical property can be quantified if we can estimate the
error in each sample of the surrogate model.


