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Motivation

We are oftentimes interested in using computationally intense simulations to
compute statistical properties (moments, probabilities, etc.) for a quantity of
interest (QofT).

Error in Plg(A) > T| = discretization error + sampling error

Do we trust Monte Carlo to compute statistical properties given a small number
of samples?

One alternative is to use a surrogate model (polynomial chaos, stochastic collo-
cation, gaussian process, etc.).

Polynomial Chaos Approximations

Model:
u= M(\)

Let {Q2, F, P} be a probability space.

Let Z(w) be a random variable and let {®;(Z)},-, be a set of
polynomials orthogonal w.r.t density of Z.

Model parameter as a random variable A = A(w) with finite variance,
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Truncate expansion at order p, giving the total number of terms,
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Trade off: Smaller sampling error for a larger discretization error.

Do we trust surrogate models to compute statistical properties given (virtually)
unlimited samples?

The error in the statistical property can be quantified if we can estimate the
error in each sample of the surrogate model.

The goal is to estimate the error in samples of a quantity of interest computed
from a polynomial chaos (PC) approximation.

We take the following approach:
e We compute a PC approximation of the forward problem.
e We compute a PC approximation of a properly defined adjoint problem.

e For each sample of the Qofl, we sample the adjoint approximation and
produce an estimate of the error.

Parameterized Linear Systems

A Posteriori Error Analysis

Let X and Y be Banach spaces and consider L : X — Y.
The adjoint operator L* : Y* — X* is defined such that (Lz,y*) = (x, L*y*)

Let x solve Lx = f, let x = x and definee=x — and R = f — Lx.
Let ¢ solve the adjoint problem, L*¢ = 1.

We derive the error representation, (¢, e) = (L*¢,e) = (¢, Le) = (¢, R).

!

Not Computable Computable

The error analysis for nonlinear operators is handled by an appropriate lin-
earization and the extension to systems of equations is straightforward [3].

Example 1: Standard Analysis for a Nonlinear Coupled System

Let z(s) € R™ solve the parameterized linear system,
A(s)x(s) =b(s), se€,
for a given A(s) € R™ x R™ and b(s) € R™.
Let z be a surrogate approximation and define, e(s) = x(s) — xn(s).
We assume the following point-wise error estimate holds,
le(s)[| Lo (@uz2@ny) < Cer(N)
for some €1 (IN) > 0.

Let ¢(s) solve the adjoint problem,

Al (s)p(s) =1, Vse Q.

Lemma [2]

Let ¢ be a PC approximation of ¢.

At each s € ) we derive the error representation:
(¥, e(8)) = (R(3), (8))
= (R(3), om(8)) + (R(3), 9(5) — dn(8))

Computable Higher Order

Consider the coupled model for neutron diffusion, u; and temperature, uo,

(—V - (D(u2)Vuy) + (Za(uz) —vEs(u2))uy = s, €9,
) up = 0, x € 0f),
-V - (KV’UQ) + Huoy — EfI/Zf(”UQ)ul = HU/Q,OO, T € Q,
| KVuy -n =0, x € 0f.
where
5 () = OHUTIER, =252 5 ) e O i e ) (T 00 S
U2 U2 U2, 0

Let up 1 and up 2 be finite element approximations to u; and ug respectively.

We linearize the problem around wj, = (up 1,upn )’ to obtain

) — {Ell(uh)él + L1o(up)ds

Lo1(up)d1 + Loo(up)do,

The adjoint operator is given by,

J<uh>*¢ - >{1(,l“l’ha)q51 N E;l(uh)qb

Lis(un)dr + L3y (un) g2,
po—
(0 (1 Value Error i Mo Effect.
1/100 0 7.3312E13 5.6029E9  5.3300E9  2.7284ES8 | 0.9999
0 1/100 5.9482E2 1.3470E-2 1.3112E-2  3.5832E-4 | 1.0000

p(50;10) 0 1.0526K14  2.6428E8 —1.6916E6 2.6608ES8 | 1.0004
0 p(25,10) 5.9763E2 1.4962E-2 1.2693E-2 2.2690E-3 | 0.9999
0 p(65,10) 6.1128E2 1.3760E-2 1.0739E-2  3.0209E-3 | 0.9999

Table: The approximate value, error, and contributions to the error from the
neutron diffusion residual, 77, and from the temperature residual, ns, for a
variety of quantities of interest.
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Allows us to define an improved linear functional,

9(zn(s), dr(s)) = (b, zn(s)) + (R(s), pn(s)) .

Theorem [2]

If the pointwise error in the adjoint solution satisfies,

[#(8) — Par(8)]| Lo (ui2m)) < €2(M),

then the pointwise error in the improved linear functional is
bounded by,

1%, 2(s)) — g(en(s), da1(8))l Lo (@) < Cer(N)ea(M),

where C' > 0 depends only on A(s).

Example 2: A Discontinuous Quantity of Interest

Consider the parameterized linear system,

e RS - L 2l

where [-] is the ceiling operator and s; € [—1, 1].

Quantity of interest is x1(s).
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Figure: High-order spectral approximation of the linear functional (left), the
improved linear functional (center), and the convergence rates for each (right).

Stochastic Differential Equations

Model for nonlinear stochastic diffusive transport:

(% V. (A, t, \)Vu) + g(z,t;u) = f(z,t,)), £€85,0<t<T,
 AVu-n =0, r€05,0<t<T,
Lu(z,0) =0, T €5,

where S is a convex polygonal domain.

Variational formulation for a fixed \: Find u € L*([0,T]; H(S)) s.t.

T
/O (Bu/8t,0) 5 + (A(z, £, )V, Vo) g + (9(a, ), 0)g] dt
:/O (F(@,t,0),0) dt

for all v € L*([0, T]; H(S)) with v(z,0) = 0.

Seek u = kazo ug(x,t)®Pr(Z), such that for k =0,1,..., P,
T
/ (Oug /0t,v)g dt
0

1 i P P
== H(I)kH2 /O <A (ZE,t;Z)\iq)i(Z)> ZVuj(I)j(Z),(I)k> ,V?} dt
1=0 §=0

S
1 T P
7=0

S

. / (Fol@,8),0) dt

for all v € L4([0, T]; H'(S)).

The strong form of the adjoint for a fixed A,

(_99 _ V. (AT(2,t, \)Vo) + g, U ) ¢ =0, z€S,T>t>0,
§ ATVep -n =0, xe0S,T>t>0,
\gb(va) = 1, x €S,

where g(u,U; \) = fol

Lemma [1]

We follow standard steps (substitutions, integration-by-parts, etc.)
to derive the error representation:

Oug(x,t;su+ (1 —s)U) ds.

(TN )5 = (O ), 60 N)s = Y [ (QUN)/08,0(N)s
=3 (W65 + 3 [ (F=9@).6(0)s d

5 /I (ANVUN), Vo(N)g dt

We approximate ¢ using a PC expansion:

O tiN) = Y dila )02 (W)).

Example 3: Random Source Location

Consider the contaminant source problem:

ou 5 A — x|?
iy V.-Vu= 52 CXP (— 502 ) (1 —H(t—0.05))

with S =[0,1]%, T = 0.21, u(z,0) =0, s = 10 and o = 0.1.
Random variable A uniformly distributed on [0, 1]°.

Discretization: h = 0.1, At = 0.005 and 6"* —order PC expansion.
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Figure: Polynomial chaos approximation of the quantity of interest (left) and
the a posteriori error estimate (right).
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Time A Std Err Est u(x1,t) | PC Err Est u(x1 t)
0.05 [ (0.25,0.25) —1.094E — 02 —1.207E — 02
0.05 | (0.75,0.25) 2.142E — 03 2.144E — 03
0.05 | (0.25,0.75) 2.347E — 03 2.348E — 03
0.05 | (0.75,0.75) 1.439E — 03 1.466E — 03
0.05 | (0.4,0.375) 4.273E — 03 4.508E — 03
0.15 | (0.25,0.25) 5.754E — 03 5.812E — 03
0.15 | (0.75,0.25) —3.637E — 03 —3.670E — 03
0.15 | (0.25,0.75) —3.511E — 03 —3.553E — 03
0.15 | (0.75,0.75) 1.444E — 03 1.4376E — 03
0.15 | (0.4,0.375) 7.686E — 05 9.389E — 05

Table: Comparison of the traditional error estimate with the error estimate
using the polynomial chaos approximation of the adjoint.

Example 4: Random Permeability

Consider the contaminant source problem:

ou . s T — z|?
5 V- A(x,t; \)Vu = 52 CXP (— 52 ) (1 - H(t—0.05))
with S =[0,1]%, T = 0.21, u(x,0) = 0, s = 10 and o = 0.1.

[ Aexp(2sin(27z) cos(4my) 0
Az, t; M) = ( 0 exp(2sin(4my) + 2 cos(2mx)

Random variable A uniformly distributed on [0.5, 1.5].

Discretization: h = 0.1, At = 0.005 and 6"* —order PC expansion.
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Figure: Polynomial chaos approximation of the quantity of interest (left) and
the a posteriori error estimate (right).

A | Std Err Est u(x®F, t) | PC Err Est u(x®},t) | Ratio
0.50 0.22660 0.22667 1.00032
0.75 0.19693 0.19694 1.00006
1.00 0.17823 0.17823 1.00000
1.25 0.16520 0.16519 0.99996
1.50 0.15550 0.15548 0.99983

Table: Comparison of the traditional error estimate with the error estimate
using the polynomial chaos approximation of the adjoint.

Conclusions / Future Work

e Statistical properties computed using numerical models have error due to
discretizations and sampling.

e High-fidelity models have reduced discretization error, but fewer samples
can be taken.

e Surrogate models constructed from high-fidelity simulations can be cheaply
sampled, but have larger discretization error.

e A posteriori error analysis can be used to estimate the error in these
samples.

e Future works includes an error analysis for coupled systems and an esti-
mation of the effect of measure transformations.
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