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Computational Noise in Simulations

Finite precision + finite processes lead to noise in simulations
throughout computational science & engineering.

Noisy Forward Differences

A practical problem with differences: How to choose /?

Stochastic Results
Estimate f;(t) = E{t* + 107°U;_y 5.5} att = 1.
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e Expected error & uncertainty region predicted by theory
e h,, falls near minimum of E {&(h)}.

Extension: Central Differences

First derivatives
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e gives rough estimate of | f/| for forward difference h.
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The Noise Level ¢ and Differences

Univariate stochastic model, f(¢) = f(¢t) +(t), t € Z,
fs smooth, deterministic
¢ iid on 7. —mno distribution assumptions<—

Definition. The noise level of f is e; = (Var {e(t)})"/2.

If f, is k-times differentiable,

AFf@E) = AMUf(E+R) - AMTF()
= f9(g)h* + Ake(t), & € (t,t+ kh).
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Theorem [4]:
If {e(t +ih) :i=0,...,m}iid
L wE{[A% @)} =}, %= 5
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2. If £, is continuous at ¢, }1113(1) 7E { [AFf(t)] } =&}

ECNoi se [4] uses oy = (qk[Al‘f(ti)]Z) v to estimate c¢
o Devices for choosing k and verifying h is small enough
o Empirically validated for deterministic f
o Requires only a few (6-8) f evaluations.

Assume
o f(t)=fs(t)+eonZT={tr+h:0<h<hy}
o f, twice differentiable, 1, < |f/| < py,onZ
and minimize the mean-squared-error
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Theorem [5]:
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For hy sufficiently large:
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1. Upper bound minimized by h,, = 8'/4 (if) _

2. When y, > 0, h,, is near-optimal:

_ Hoar
E{&E(hy)} = \/ﬁ/mef < (N: ) oin
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min E{E(h)}.

Other Forward Difference Step Sizes

1. Square-root of machine precision: & = \/€mach.
2. Based on a uniform bound on roundoff error, |f(t) —
foo(t)] < €4, [2] minimizes an upper bound on [; error
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— Requires estimate of €, and h, < hq.

f(t) = (zo + tp)T A, (0 + tp), with
A,
A71

computed by Gaussian elimination.

= (ill-conditioned) n x n Hilbert matrix

n hM hA eSt(h]u) est(hA) est(%)
5| 24e-06 6.9e-06 | 20.4350 20.4350 20.4357
6 | 4.2e-06 3.4e-05 | 28.8913 28.8915 28.8940
7 | 1.2e-05 1.8e-04 | 37.2351 37.2362 37.2558
8 | 4.0e-05 1.0e-03 | 43.9805 43.9869 44.2150
9 19.3e-05 53e-03 | 56.1004 56.1427 51.6127
10 | 2.0e-04 2.9e-02 | 67.1231 67.3678 60.1290
11 | 7.8e-04 1.6e-01 | 80.3738 81.8401 279.6018

Roundoff errors are systematic
= obtain more digits of f.  using h;.

Deterministic Results

Ex.- Quadratic Functions and BiCGSTAB
o(t) = |ly-(t)]|?, where Ay, = x¢ + tp is solved with BiCGSTAB
with tolerance 7 = 1073 and A is a UF matrix [1].

Compared with automatic differentiation (INTLAB [6]) derivative
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e Exhibits behavior similar to stochastic differences
o hyr obtains 2 more correct digits than 10%2h,,.

Ex.- Highly Nonlinear M NPACK- 2 Problems from [3]
EPT problem (n=640,000)
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e Accurate estimates obtained even when f” not constant
o Relatively insensitive to misestimation of |f”| and ¢/.

Differences vs. Derivatives
BiCGSTAB quadratics ¢(t) = ||y-(t)||* with more tolerances 7.
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Relative Noise in the Function

e Derivatives are noisier than functions

e Different tolerances yield very different noise levels

e Computed derivative can be much noisier than finite dif-
ference estimate, especially when f is noisy.

Summary

A few extra function evaluations can give better derivatives!

e Computational noise complicates analysis of simulation-
based functions
e Stochastic theory yields near-optimal step sizes

e Requires only coarse estimates
of noise and | f”|

e Works on deterministic func-
tions in practice

e More robust than h 4 & \/€mach

e Extends to higher-order differ-
ence schemes and derivatives

e Finite differences can produce
reliable derivatives for very
noisy functions.
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High noise levels
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