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Computational Noise in Simulations

Finite precision + finite processes lead to noise in simulations
throughout computational science & engineering.

Differences |f(x)− f(x+ Zω)| in an eigenvalue computation

Computational noise can result from
• Iteratively solving systems of PDEs
• Adaptively computing integrals
• Discretizations/meshes, estimating eigenvalues

. . . and other fundamental calculations.

Computational noise is not:
⋄ truncation error

Rn+1(x) = f(x)−
n
∑

i=0

Pi(x)

⋄ roundoff error
f∞(x)− f(x).
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The Noise Level εf and Differences

Univariate stochastic model, f(t) = fs(t) + ε(t), t ∈ I,
fs smooth, deterministic
ε iid on I. →no distribution assumptions←

Definition. The noise level of f is εf = (Var {ε(t)})1/2.

If fs is k-times differentiable,

∆kf(t) = ∆k−1f(t+ h)−∆k−1f(t)

= f
(k)
s

(ξk)h
k +∆

kε(t), ξk ∈ (t, t+ kh).
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To quantify noise:
Make h small enough
and k large enough
to remove the smooth
component.

Theorem [4]:
If {ε(t+ ih) : i = 0, . . . , m} iid

1. γkE
{

[∆kε(t)]2
}

= ε2f , γk =
(k!)2

(2k)!
.

2. If fs is continuous at t, lim
h→0

γkE
{

[

∆kf(t)
]2
}

= ε2f .

ECNoise [4] uses σk =
(

γk[∆kf(ti)]2
)1/2

to estimate εf

• Devices for choosing k and verifying h is small enough
• Empirically validated for deterministic f
• Requires only a few (6-8) f evaluations.

Noisy Forward Differences

A practical problem with differences: How to choose h?

f ′(t0) ≈
f(t0 + h)− f(t0)
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Noise in a deterministic iterative solver
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Optimal Forward Difference Step Size

Assume
• f(t) = fs(t) + ǫ on I = {t0 + h : 0 ≤ h ≤ h0}
• fs twice differentiable, µL ≤ |f ′′

s | ≤ µM on I
and minimize the mean-squared-error

E {E(h)} = E

{

(

f(t0 + h)− f(t0)

h
− f ′

s(t0)

)2
}

.

Theorem [5]:

1

4
µ2

L
h2 + 2

ε2f

h2
≤ min

0≤h≤h0

E {E(h)} ≤ 1

4
µ2

M
h2 + 2

ε2f

h2

For h0 sufficiently large:

1. Upper bound minimized by hM = 81/4
(

εf
µM

)1/2

.

2. When µL > 0, hM is near-optimal:

E {E(hM)} =
√
2µMεf ≤

(

µM

µL

)

min
0≤h≤h0

E {E(h)} .

Other Forward Difference Step Sizes

1. Square-root of machine precision: h =
√
ǫmach.

2. Based on a uniform bound on roundoff error, |f(t) −
f∞(t)| ≤ εA, [2] minimizes an upper bound on l1 error

to obtain hA = 2
(

εA
µM

)1/2

.

→ Requires estimate of εA and hA ≤ h0.

Ex.- f(t) = (x0 + tp)TA−2
n (x0 + tp), with

• An = (ill-conditioned) n× nHilbert matrix
• A−1

n computed by Gaussian elimination.

n hM hA est(hM ) est(hA) est(
√
ǫmach)

5 2.4e-06 6.9e-06 20.4350 20.4350 20.4357
6 4.2e-06 3.4e-05 28.8913 28.8915 28.8940
7 1.2e-05 1.8e-04 37.2351 37.2362 37.2558
8 4.0e-05 1.0e-03 43.9805 43.9869 44.2150
9 9.3e-05 5.3e-03 56.1004 56.1427 51.6127

10 2.0e-04 2.9e-02 67.1231 67.3678 60.1290
11 7.8e-04 1.6e-01 80.3738 81.8401 279.6018

Roundoff errors are systematic
⇒ obtain more digits of f ′

∞ using hM .

Stochastic Results

Estimate f ′
s(t) = E{t3 + 10−6U[−2

√
3,2

√
3]}′ at t = 1.
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• Expected error & uncertainty region predicted by theory
• hm falls near minimum of E {E(h)}.

Deterministic Results

Ex.- Quadratic Functions and BiCGSTAB
φ(t) = ‖yτ (t)‖2, where Ayτ = x0 + tp is solved with BiCGSTAB
with tolerance τ = 10−3 and A is a UF matrix [1].

Compared with automatic differentiation (INTLAB [6]) derivative
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• Exhibits behavior similar to stochastic differences
• hM obtains 2 more correct digits than 10±2hM .

Ex.- Highly Nonlinear MINPACK-2 Problems from [3]

EPT problem (n=640,000)
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Estimated error
Realized error

Error for h*

Compared with hand-coded derivative
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• Accurate estimates obtained even when f ′′ not constant
• Relatively insensitive to misestimation of |f ′′| and εf .

Extension: Central Differences

First derivatives

• |hM | = γ5

(

εf
µM

)1/3

, γ5 = 31/3, |f (3)
s | ∈ [µL, µM ]

• E {E c(hM)} ≤
(

µM

µL

)2/3

min|h|≤h0
E {E c(h)}.

Second derivatives

• |hM | = γ7

(

εf
µM

)1/4

, γ7 = 25/8 31/8, |f (4)
s | ∈ [µL, µM ]

• E {E2(hM)} ≤
(

µM

µL

)

min|h|≤h0
E {E2(h)}

• gives rough estimate of |f ′′
s | for forward difference h.

Differences vs. Derivatives

BiCGSTAB quadratics φ(t) = ‖yτ (t)‖2 with more tolerances τ .
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INTLAB Derivative
FD Estimate

• Derivatives are noisier than functions
• Different tolerances yield very different noise levels
• Computed derivative can be much noisier than finite dif-
ference estimate, especially when f is noisy.

Summary

A few extra function evaluations can give better derivatives!

• Computational noise complicates analysis of simulation-
based functions
• Stochastic theory yields near-optimal step sizes

• Requires only coarse estimates
of noise and |f ′′|
• Works on deterministic func-
tions in practice
• More robust than hA &

√
ǫmach

• Extends to higher-order differ-
ence schemes and derivatives
• Finite differences can produce
reliable derivatives for very
noisy functions.
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