
Hedging Against Uncertainty:
A Modeling Language and Solver Library

You Plan Stu� Happens You Adjust More Stu� Happens

Multi-Stage Planning for
Uncertain Environments
• Explicitly capture recourse
• Uncertainty modeling framework
• Integrated solver strategies

What We Do:
• Mixed decision variables

♦ Continuous
♦ Integer/Binary

• General multi-stage
• Stochastic programming

♦ Expected value
♦ Conditional Value-at-Risk
♦ Scenario selection

• Cost confidence intervals

How We Do It:
• Deterministic equivalent
• Scenario-based decomposition

♦ Progressive Hedging
♦ Customizable accelerators

• Algebraic modeling via Pyomo
• SMP and cluster parallelism
• Integrated high-level language support
• Multi-platform, unrestrictive license
• Open source, actively supported by Sandia
• Co-Managed by Sandia and COIN-OR

TO LEARN MORE VISIT > https://software.sandia.gov/trac/coopr/wiki/PySP

PySP: Stochastic Programming in Python

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Slide 1	

Progressive Hedging: Basic Pseudo-Code

Rockafellar and Wets (1991)

Parallelization and Scenario-Based Decomposition

•  Progressive Hedging is “trivially” parallelizable
–  Each batch of sub-problem solves is independent
–  So what’s the big deal?

•  Maintaining parallel efficiency is a major issue in any practical implementation

•  Key problem drivers
–  High variability in sub-problem solve times
–  Sub-problem solves too fast => communication dominates

•  Key solution strategies
–  Relaxing barrier synchronization after each batch of sub-problem solves
–  Scenario “bundling” to increase sub-problem difficulty and to accelerate

PH convergence

Slide 2	

Asynchronous Sub-Problem Solves in PH

•  In the case of mixed-integer optimization problems, variability of sub-
problem solve times can be considerable

–  Observations “in the wild” vary over 4 or more orders of magnitude

•  The presence of such dramatic variability clearly destroys any potential
benefit of parallelism in PH

•  Our solution
–  Relax the barrier synchronization, allow for asynchronous solves
–  Retains PH convergence properties, as long as sub-problem solves

for each scenario periodically report back

•  Challenges and Results
–  Significant interference with mixed-integer acceleration mechanisms
–  Slows PH convergence, but (empirically) only by a constant factor

Slide 3	

Scenario Bundling in PH

•  General idea
–  Cluster scenarios using some similarity (or dis-similarity) metric
–  Forming miniature “extensive forms”

•  Benefits
–  Increases sub-problem solve times, dropping comm:compute ratio
–  (Often) dramatic accelerations in PH convergence

•  Research questions
–  Do we bundle based on maximal similarity or maximal differences?
–  How to handle bundling in multi-stage scenario trees?

•  Preliminary results
–  Even pairing of scenarios randomly yields very large reductions in the

number of PH iterations required for convergence
Slide 4	

Driver Applications for Asynch PH and Bundling
•  Stochastic Unit Commitment

–  Two and multi-stage stochastic mixed-integer

•  Transmission and Generation Expansion
–  Two and multi-stage stochastic mixed-integer

•  Parameter estimation
–  Childhood disease models (SIR)
–  Two and multi-stage stochastic non-linear

•  Network design
–  Academic, but very difficult (two-stage mixed-integer stochastic programs)

•  Forestry management
–  Multi-stage mixed-integer; determining harvest schedule

Slide 5	

Software and Contact Information

•  All of these techniques are available in our PySP open-source software package
–  https://software.sandia.gov/trac/coopr/wiki/PySP
–  Distributed by Sandia and COIN-OR
–  Jointly developed and maintained by Sandia and UC Davis

•  Asynchronous PH and bundling interfaces are currently supported in PySP
–  Alpha, but functional
–  The rest of PySP is rather stable

•  Feel free to contact us!
–  Jean-Paul Watson (jwatson@sandia.gov)
–  David L. Woodruff (dlwoodruff@ucdavis.edu)

Slide 6	

