Hedging Against Uncertainty: A Modeling Language and Solver Library Stuff Happens You Adjust More Stuff Happens You Plan 212 Reference Model: Define the Problem Structure t total_acreage_rule(mc 65 65

PYOMO PySP: Stochastic Programming in Python

Multi-Stage Planning for Uncertain Environments

- Explicitly capture recourse
- Uncertainty modeling framework
- Integrated solver strategies

a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

ScenarioStructure.dat: ScenarioStructure.dat: Define the Uncertainty Structure set Stages := FirstStage SecondStage ; set Nodes := RootNode BelowAverageNode AverageNode AboveAverageNode ; SecondStage	RootNode.dat: Data We Know set CROPS := WHEAT CORN SUGAR_BEETS : Param TOTAL_ACREAGE := 500 : # no quotas on wheat or corn Param PriceQuota := WHEAT 10000 CORN 10000 SUG Param SubQuotaSellingPrice := WHEAT 107 CORN 10000 SUG Param SuperQuotaSellingPrice := WHEAT 107 CORN 10000 SUG Param CattleFeedRequirement := WHEAT 0 CORN 10000 SUG
AverageScenario AboveAverageVoter AboveAverageScenario AverageScenario AboveAverageScenario A	<pre># can't purchase beets (no real need, as cattle don't aram PlantingCostPerAcre := WHEAT 150 CORN 230 SUGAR_BEETS 1 5; ageNode de rageNode ; *];</pre>
<pre>param StageCostValler year param ScenarioBasedData := False ; param ScenarioBasedData := False ; param MeanYield := WHEAT 2.0 CORN 2.4 SUGAR_BEETS 16 ;</pre>	

What We Do:

- Mixed decision variables
 - Continuous
 - Integer/Binary
- General multi-stage
- Stochastic programming
 - Expected value
 - Conditional Value-at-Risk
 - Scenario selection
- Cost confidence intervals

TO LEARN MORE VISIT > https://software.sandia.gov/trac/coopr/wiki/PySP

How We Do It:

- Deterministic equivalent
- Scenario-based decomposition
 - Progressive Hedging
 - Customizable accelerators
- Algebraic modeling via Pyomo
- SMP and cluster parallelism
- Integrated high-level language support
- Multi-platform, unrestrictive license
- Open source, actively supported by Sandia
- Co-Managed by Sandia and COIN-OR

Sandia National Laboratories

Progressive Hedging: Basic Pseudo-Code

- 1. k := 0
- 2. For all $s \in \mathcal{S}, x_s^{(k)} := \operatorname{argmin}_x (c \cdot x + f_s \cdot y_s) : (x, y_s) \in \mathcal{Q}_s$
- 3. $\bar{x}^k := \left(\sum_{s \in \mathcal{S}} p_s \, d_s x_s^{(k)}\right) / \sum_{s \in \mathcal{S}} p_s \, d_s$
- 4. For all $s \in S$, $w_s^{(k)} := \rho(x_s^{(k)} \bar{x}^{(k)})$
- 5. k := k + 1
- 6. For all $s \in S$, $x_s^{(k)} := \operatorname{argmin}_x (c \cdot x + w_s^{(k-1)} x + \rho/2 \|x \bar{x}^{(k-1)}\|^2 + f_s \cdot y_s)$: $(x, y_s) \in \mathcal{Q}_s$
- 7. $\bar{x}^{(k)} := (\sum_{s \in S} p_s \, d_s x_s^{(k)}) / \sum_{s \in S} p_s \, d_s$
- 8. For all $s \in \mathcal{S}, w_s^{(k)} := w_s^{(k-1)} + \rho \left(x_s^{(k)} \bar{x}^{(k)} \right)$

9.
$$g^{(k)} := \frac{(1-\alpha)|S|}{\sum_{s \in S} p_s d_s} \sum_{s \in S} \left\| x^{(k)} - \bar{x}^{(k)} \right\|$$

10. If $g^{(k)} < \epsilon$, then go to step 5. Otherwise, terminate.

Slide 1

Rockafellar and Wets (1991)

Parallelization and Scenario-Based Decomposition

- Progressive Hedging is "trivially" parallelizable
 - Each batch of sub-problem solves is independent
 - So what's the big deal?
- Maintaining parallel efficiency is a major issue in any practical implementation
- Key problem drivers
 - High variability in sub-problem solve times
 - Sub-problem solves too fast => communication dominates
- Key solution strategies
 - Relaxing barrier synchronization after each batch of sub-problem solves
 - Scenario "bundling" to increase sub-problem difficulty and to accelerate PH convergence

Slide 2

Asynchronous Sub-Problem Solves in PH

- In the case of mixed-integer optimization problems, variability of subproblem solve times can be considerable
 - Observations "in the wild" vary over 4 or more orders of magnitude
- The presence of such dramatic variability clearly destroys any potential benefit of parallelism in PH
- Our solution
 - Relax the barrier synchronization, allow for asynchronous solves
 - Retains PH convergence properties, as long as sub-problem solves for each scenario periodically report back
- Challenges and Results
 - Significant interference with mixed-integer acceleration mechanisms

- Slows PH convergence, but (empirically) only by a constant factor Slide 3

Scenario Bundling in PH

- General idea
 - Cluster scenarios using some similarity (or dis-similarity) metric
 - Forming miniature "extensive forms"
- Benefits
 - Increases sub-problem solve times, dropping comm:compute ratio
 - (Often) dramatic accelerations in PH convergence
- Research questions
 - Do we bundle based on maximal similarity or maximal differences?
 - How to handle bundling in multi-stage scenario trees?
- Preliminary results
 - Even pairing of scenarios randomly yields very large reductions in the number of PH iterations required for convergence

Slide 4

Driver Applications for Asynch PH and Bundling

- Stochastic Unit Commitment
 - Two and multi-stage stochastic mixed-integer
- Transmission and Generation Expansion
 - Two and multi-stage stochastic mixed-integer
- Parameter estimation
 - Childhood disease models (SIR)
 - Two and multi-stage stochastic non-linear
- Network design
 - Academic, but very difficult (two-stage mixed-integer stochastic programs)
- Forestry management
 - Multi-stage mixed-integer; determining harvest schedule

Slide 5

Software and Contact Information

- All of these techniques are available in our PySP open-source software package
 - <u>https://software.sandia.gov/trac/coopr/wiki/PySP</u>
 - Distributed by Sandia and COIN-OR
 - Jointly developed and maintained by Sandia and UC Davis

- Asynchronous PH and bundling interfaces are currently supported in PySP
 - Alpha, but functional
 - The rest of PySP is rather stable
- Feel free to contact us!
 - Jean-Paul Watson (jwatson@sandia.gov)
 - David L. Woodruff (dlwoodruff@ucdavis.edu)

