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Abstract

In this work, we present an adaptive high-order minimum
action method for dynamical systems perturbed by small
noise. We use thehp finite element method to approxi-
mate the minimal action path and nonlinear conjugate gra-
dient method to solve the optimization problem given by the
Freidlin-Wentzell least action principle. The gradient ofthe
discrete action functional is obtained through the functional
derivative and the moving mesh technique is employed to
enhance the approximation accuracy. Numerical examples
are given to demonstrate the efficiency and accuracy of the
proposed numerical method.

Problem description

We consider random perturbations of dynamical systems.
Let the random processXt = X(t) : R+ → R

n defined
by the following stochastic ordinary differential equation
(SODE):

dXt = b(Xt)dt +
√
εdWt, (1)

whereWt is a standard Wiener process inRn and ε is a
small positive parameter. Letφ(t) ∈ R

n be an absolutely
continuous function defined fort ∈ [0, T ]. The Wentzell-
Freidlin theory tells us that the probability ofX(t) passing
through theδ-tube aboutφ on [0, T ] is

Pr(ρ(X, φ) < δ) ≈ exp(−1

ε
ST (φ)), (2)

with ρ(φ, ϕ) = supt∈[0,T ] |φ(t) − ϕ(t)|, | · | indicates theℓ2
norm inRn, andST (φ) is the action functional ofφ on [0, T ],
defined as

ST (φ) =
1

2

∫ T

0

L(φ̇, φ)dt, (3)

whereL(φ̇, φ) = |φ̇ − b(φ)|2. In general, we have the fol-
lowing large deviation principle

lim
ε→0

ε log Pr(X ∈ A) = −min
φ∈A

ST (φ), (4)

whereA is a particular set of random events. Thus the basic
contribution toPr(X ∈ A) is given by the neighborhood
of the minimum ofST (φ) when ε is small enough. The
minimizer φ∗, which satisfiesST (φ∗) = minφ∈AST (φ) is
also called the “minimal action path” (MAP).

Available minimum action methods

We here only focus on numerical methods for general (non-
gradient) dynamical systems, which are usually called min-
imum action methods (MAM).

•The original MAM . The original MAM was proposed
in [1] coupling the finite difference discretization in time
and an L-BFGS optimization solver.

•The adaptive MAM . The adaptive MAM was pro-
posed in [5]. The authors observed that a sufficiently
large time interval can resolve the MAP defined on an
infinite time interval and the main reason that the original
MAM may converge poorly is due to the slow dynamics
in the transition regions which makes the uniform tem-
poral discretization dramatically skewed with respect to
the arc length. A moving mesh technique is then used to
redistribute the grid points to make them more uniform
according to the arc length, which improves significantly
both accuracy and efficiency.

•The geometric MAM. The geometric MAM was pro-
posed in [2]. The authors directly considered discretiza-
tion with respect to a parametrization variable (the arc
length) instead of time. However, the problem needs to
be reformulated with respect to the parametrization vari-
able, i.e., in the space of curves.

All available MAMs are focused on finite difference dis-
cretization without addressing parallel computing, which
make them not straightforward to couple with a finite

element solver of the original dynamical system modeled
by a PDE and not appropriate for large-scale simulations.

A variational approach based on thehp finite
element approximation

Suppose that we choose a finite dimensional approximation
space spanned by{ψi(t)}Mi=1 such that

φh(t) =

M
∑

i=1

φiψi(t), δφh(t) =

M
∑

i=1

δφiψi(t), (5)

whereφi, δφi ∈ R
n. We then have

δST (φh) = 〈δST
δφh

, δφh〉t =
M
∑

i=1

〈δST
δφh

, δφiψi(t)〉t. (6)

Consider the particular choice ofδφh, whose coefficients
are equal to zero except thej-th componentδφi,j of δφi.
We then obtain

δST (φh) = 〈δST
δφh

, ψi(t)ej〉tδφi,j, (7)

which implies that

(∇ST (φh))k(i,j) =
∂ST
∂φi,j

= 〈δST
δφh

, ψi(t)ej〉t, (8)

whereej ∈ R
n is the unit Euclidean vector such that itsjth

component is1 and the rest components are zero,k(i, j) is
a global index uniquely determined byi = 1, . . . ,M and
j = 1, . . . , n. Note that∇ST is usually required by an ef-
ficient optimization algorithm, such as nonlinear conjugate
gradient method, L-BFGS, etc. For the stochastic ODE sys-
tem, we have

(∇ST (φh))k(i,j) = 〈φ̇h−b(φh), ψ̇i(t)ej−b̂(φh)ψi(t)ej〉t, (9)

where

b(φ + δφ) = b(φ) + b̂(φ)δφ +O(δ2φ).

It is observed that the computation of∂ST/∂φi,j is an in-
tegration problem, which can be easily dealt with by using
Gauss-type quadrature formulas. Such a strategy can also
be easily generalized to deal with stochastic PDE. Once the
gradient of the action functional is obtained, we use the
nonlinear conjugate gradient (CG) method to solve the op-
timization problem to get the MAPφ∗h.

Parallelism of the algorithm

On the reference elementR, we assume that the approxima-
tion space consists of linear combinations of the following
basis functions:

ψ̂i(τ ) =











1−τ
2 i = 0,

1−τ
2

1+τ
2 P

1,1
i−1(τ ), 0 < i < p,

1+τ
2 i = p,

(10)

whereP 1,1
i denote orthogonal Jacobi polynomials of degree

i with respect to the weight function(1− τ )(1 + τ ). ψ̂0(τ ),
and ψ̂p(τ ) are consistent with linear finite element basis,
andψ̂i(τ ), 0 < i < p, are introduced for high-order approx-
imation. Note thatψ̂i(±1) = 0 for 0 < i < p. We call
ψ̂0(τ ) and ψ̂p(τ ) boundary modes, and̂ψi(τ ), 0 < i < p,
interior modes. We then identify the following two-level
parallelism:
Level one- Along the time direction, we use MPI for par-
allelization, where only the information about boundary
modes needs to be exchanged between two adjacent com-
putation nodes.
Level two - On each computation node, we use OpenMP to
parallelize the computation of the gradient, which is more
important for a stochastic PDE.
Thus parallel MAM is consistent with the current high per-
formance computing (HPC) architecture.

Numerical results

We consider the following example, for which the MAP can
be obtained explicitly:

{

dx = −∂xV (x, y)dt +
√
εdW x

t

dy = −∂yV (x, y)dt +
√
εdW y

t
(11)

where the potentialV (x, y) is

V (x, y) = (1− x2 − y2)2 + y2/(x2 + y2). (12)

The dynamical system has two stable fixed pointsa1 =
(−1, 0) and a2 = (1, 0), which are local minima of the
potential V (x, y). We consider the MAP in the upper
half-plane connectinga1 and a2 through the saddle point
a3 = (0, 1). Then the explicit form of this MAP is the up-
per branch of the unit circle:x2 + y2 = 1. The exact ac-
tion functional is2 × (V (a3) − V (a1)) = 2. In figure 1 we
demonstrate theh- andp-converge of our algorithm, where
the moving mesh technique is used to make the time mesh
nearly uniform with respect to the arc length.
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Figure 1: Left: h-convergence. Right:p-convergence.

We subsequently look at the random perturbations of
Kuramoto-Sivashinsky (K-S) equation

{

ut + 4uxxxx + α
[

uxx +
1
2(ux)

2
]

=
√
εẆ (x, t),

u(x, 0) = u0(x), u(x, t) = u(x + 2π, t),
(13)

whereα is a bifurcation parameter. The Euler-Lagrange
equation of the action functional

(−∂2t + α2∂4x + 8α∂6x + 16∂8x)v +N (v) = 0, (14)

whereN (v) is the non-linear part. From the linear part
of the Euler-Lagrange equation (14), we see that the ra-
tio between the largest and smallest eigenvalues isCk =
(αk2 − 4k4)2/(α− 4)2, wherek ∈ Z and the smallest abso-
lute value ofk is equal to 1 since the mean mode is taken
out. When32 Fourier modes are employed,C16 = O(107),
which implies that the condition number of the Hessian can
be very large. Thus an efficient preconditioner is necessary
to improve the convergence of the nonlinear CG iteration.
We use the inverse of the linear part of the Euler-Lagrange
equation, i.e.(−∂2t +α2∂4x+8α∂6x+16∂8x)

−1, as the precon-
ditioner for the nonlinear CG method, and the effectiveness
is shown in figure 2.

10
0

10
1

10
2

10
3

10
4

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Iteration number

V
al

ue
 o

f t
he

 a
ct

io
n 

fu
nc

tio
na

l

Figure 2: Effectiveness of the pre-conditioner.
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