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Abstract element solver of the original dynamical system modelddumerical results
by a PDE and not appropriate for large-scale simulations.
In this work, we present an adaptive high-order minimum We consider the following example, for which the MAP can

action method for dynamical systems perturbed by small " .
noise. We use thép finite element method to approxi-%‘ variational approach based on thehp finite

mate the minimal action path and nonlinear conjugate g@lement approximation { dz = =0,V (x,y)dt + v edW’ (11)

— Y
dient method to solve the optimization problem given by the o | - dy = =0,V (x,y)dt + y/edW,
Freidlin-Wentzell least action principle. The gradienté SUPPOSe that we choose a finite dimensional approximatio

Where the potentidl (x, y) IS
discrete action functional is obtained through the furraio SPace spanned by);(t)};Z; such that @:9)
derivative and the moving mesh technique is employed to

M M
enhance the approximation accuracy. Numerical examples ¢, (¢) = Z oi)i(t),  Opp(t) = Z dpih;(t),
are given to demonstrate the efficiency and accuracy of the i=1 i=1

be obtained explicitly:

Vig,y)=1—2"—y) +y /@ +y). (12)

(%) The dynamical system has two stable fixed poumts=
(—1,0) anday = (1,0), which are local minima of the

proposed numerical method. whereg;, 0¢; € R". We then have potential V(x,y). We consider the MAP in the upper
A half-plane connecting; and a, through the saddle point
Problem description 5Sr () = <5ﬁ7 Shn)y = Z<5ﬁ7 Soabi(t)),.  (6) a3 = (0,1). Then the explicit form of this MAP is the up-
0P, — 09 per branch of the unit circler’ + y* = 1. The exact ac-
We consider random perturbations of dynamical systems. tion functional is2 x (V(a3) — V(a1)) = 2. In figure 1 we

Let the random proces¥; = X(¢) : R, — R" defined Consider the particular choice of),, whose coefficients

| t t theth 5 £ s demonstrate thg- andp-converge of our algorithm, where
by the following stochastic ordinary differential equatio@€ egual to zero except theth componenbe; ; of 0¢;.

the moving mesh technique is used to make the time mesh

(SODE): We then obtain nearly uniform with respect to the arc length.
dX; = b(X;)dt + v/edW;, (1) 5S7(6n) — <§ﬁ7¢i(t)ej>t5¢i,j; (7) |
where W, Is a standard Wiener process #f ande Is a Pn ol I
small positive parameter. Lett) € R" be an absolutely which implies that
continuous function defined fare [0,7]. The Wentzell- . 5
Freidlin theory tells us that the probability &f(¢) passing (VS(dn) ) niig) = I <_T7 wit)e;)s, 8 &
through the)-tube about) on [0, T'] is 0%ij  0%n | | |
. wheree; € R” is the unit Euclidean vector such thatjth =~ A
Pr(p(X, ¢) < 0) ~ exp(——51(¢)), (2) component is and the rest components are zétQ, j) is  Figure 1: Left: h-convergence. Right:p-convergence.
| o a global index uniquely determined by= 1,..., M and -
with p .((b’ p) = >UPtefo.7] (1) _.gp(t) ! '_‘ indicates the/; 7 =1,...,n. Note thatV Sy Is usually required by an ef-\é\fraijgti?g?vzgtgn;?(?,I?K?ts)tzzu;?ir;iom Pefurbations of
norm inR", andSz(¢) is the action functional abon (0, 7', ficient optimization algorithm, such as nonlinear conjegat |
defined as | T gradient method, L-BFGS, etc. For the stochastic ODE sys- { W+ gy + @ [Uge + 5(ug)?] = VEW (2, 1), (13)
Sr(¢) = 5/ L(¢, ¢)dt, (3) tem, we have u(r,0) = up(x), ulz,t)=u(r+2m,1),
0

whereL(é. ¢) = |6 — b(6)%. In general, we have the fol- (V:Sz(n))kij) = (n—b(en), Vi(t)e;—b(¢n)ti(t)e;), (9) Wherea s a bifurcation parameter. The Euler-Lagrange

lowing large deviation principle hare equation of the action functional

2 294 6 8 _
lim e log Pr(X € A) = — min Sy(¢), (4) (—0; + a0, + 80, + 160;)v + N (v) = 0, (14)

=230 oeA b(¢+ 6¢) = b(9) + b()d6 + O(5°9). | | .

. . _ where N (v) is the non-linear part. From the linear part
whereA Is a particular set of random events. Thus the bagiGs observed that the computation @1/d¢; ; is an in- of the Euler-Lagrange equation (14), we see that the ra-
contribution toPr(X € A) is given by the neighborhoodiegration problem, which can be easily dealt with by using between the largest and smallest eigenvalugs;is=
of the minimum ofS7(¢) whene is small enough. The Gauss-type quadrature formulas. Such a strategy can sk — 4k)2/(a — 4)?, wherek € Z and the smallest abso-

minimizer ¢”, which satisfiesSy(¢") = minges S7(4) IS be easily generalized to deal with stochastic PDE. Once thes value ofk is equal to 1 since the mean mode is taken

also called the “minimal action path” (MAP). gradient of the action functional is obtained, we use thgit. When32 Fourier modes are employe@;s = O(107),
nonlinear conjugate gradient (CG) method to solve the ophich implies that the condition number of the Hessian can
Available minimum action methods timization problem to get the MAR;. be very large. Thus an efficient preconditioner is necessary
to improve the convergence of the nonlinear CG iteration.
We h_ere only foc_us on numerical _methods for general (”‘ﬂﬂarallelism of the algorithm We use thg |nver23e o;‘ ti\e Ilne?r part80f }he Euler-Lagrange
gradient) dynamical systems, which are usually called min- equation, i.e(—0; + a°0, +8ad) + 160;)~ ", as the precon-
e The original MAM . The original MAM was proposed tion space consists of linear combinations of the followirl§ Shown in figure 2.
In [1] coupling the finite difference discretization in timédasis functions: 10
and an L-BFGS optimization solver. o _ ol
-7 ; — g
: : . 2 ’ E
e The _adaptlve MAM. The adaptive MAM was pro- bi(7) = 1571_57 ]311211(7)» 0<i<p, (10) ol
posed In [5]. The authors observed that a sufficiently 157 i —p
2 A

large time interval can resolve the MAP defined on an

Infinite time interval and the main reason that the originglhare P! denote orthogonal Jacobi polynomials of degree
MAM may converge poorly is due to the slow dynamics, respect to the weight functiofi — 7)(1 + 7). %(7)’

In the transition regions which makes the uniform ey, ., ) are consistent with linear finite element basis, R

poral discretization dramatically skewed with respect ig. | Un(r),0 < i < p, are introduced for high-order approx- 10 N 10

the arc length. A moving mesh technique Is then usedifg iion - Note that),(+1) — 0 for 0 < i < p. We call Figure 2: Effectiveness of the pre-conditioner.

redistribute the grid points to make them more unifor%(T) and ¢,(7) boundary modes, and;(7), 0 < i < p
p ’ [/ ’ ’

according to the arc length, which improves significantiy oo modes. We then identify the following two-leve
both accuracy and efficiency. | fy J References
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