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What do we mean by hybrid uncertainty quantification? 

   M2 

   M1     M4     M5 

   M3 

Purely Intrusive approach 

Stochastic simulation 

(UQ e mbedded in the model) 

Non-intrusive approach 

Uncertainty 

information 

hybrid approach for multi-physics 
• decompose the system into components with each having its own UQ 

• create algorithms to use these modules to propagate global uncertainties 

• in this project, we consider decomposition along physics boundaries 

   UQ Engine 

  Model 

  Model 

Uncertainty 

information 

Intrusive modules 

Wrapped by mini-UQ engines (sampling) 

Many deterministic simulations 

Uncertain 

inputs 

Uncertain 

inputs 

Uncertain 

inputs 

Intrusive modules 
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Why Hybrid UQ? 

Main driver 

M1 M2 M3 M4 

M4 

 current model development practice 

• “plug-and-play” gives flexibility 

• operator splitting widely used 

• well-defined module interfaces 

• extensive use of open source or commercial  codes as modules 

 Likely scenario in multi-physics models if UQ is embedded 

• Intrusive UQ may be readily available for some modules 

• Only non-intrusive UQ may be available for other modules 

• With time, advanced UQ may be available for some modules 

• Also, new uncertain parameters may be added from time to time 

• Thus, it is reasonable to consider UQ at module level 

• Yet, global uncertainties/sensitivities must be propagated 

• Is “plug-and-play” feasible with embedded UQ? If so, how? 

o The objective of this project is to explore this.  
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 Consider a 1D reaction-diffusion equation (D and K are second 

   order random variables (rv)) 

 

 

 

 

 Operator splitting 

 

 

 Suppose we have the following scenario: 

• intrusive polynomial chaos is available for the diffusion equation 

• only non-intrusive methods are available for the reaction equation 

• this scenario may be realistic, especially for multi-species systems 

- the reaction system may have an analytic solution 

- the reaction equation may benefit from a fast ODE solver 

- in some cases, one module may be open source or commercial code 

An Example: hybrid UQ for Reaction Diffusion Equation 
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Goal: build a global uncertainty propagation algorithm 
          via “gluing” an intrusive and a sampling module 

 diffusion 

(polynomial chaos) 

reaction 

(sampling) 

Non-intrusive module: 

• convert from base to local format 

• create appropriate sampling schemes 

• run samples 

• analyze results 

• convert from local to base format 

Intrusive module: 

• convert from base to local format 

• run local module 

• analyze results 

• convert from local to base format 

Objective: design a forward “global” uncertainty propagation algorithm 

which permits 2 different UQ methods in the two modules, and 

which permits each module to be developed independently of the other 

given that the base uncertainty format is polynomial chaos coefficients 

Thus, at each time time, the following are performed by each module 

      (which can be captured by a generic software layer): 
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 Expand independent and dependent variables in PCE 

 

 

 

 Substitute into the transport equation 

 

 

 

 Project onto each of the P+1 polynomial bases 

 

 

 

 

 apply initial/boundary conditions and then solve the equations 

 Q: how to propagate global uncertainties locally? 

Polynomial Chaos for the Diffusion Equation 
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 Goal: plug the stand-alone PCE-based dffusion module into the  

             overall global uncertainty propagation algorithm 

 Idea: for linear diffusion equations, the global uncertainty stream 

            can be broken up into pieces that can be handled naturally 

 An example, to break up the 2nd order PCE for 2 variables (D, K)  

 

 

 

 

 

 

 

 

 

 Intuitively, the global matrix can be decomposed into subproblems. 

 

Propagation of Uncertainties through the Diffusion Module 

D order K order 

0 0 

1 0 

0 1 

2 0 

1 1 

0 2 

 

PCE for D, p=2 

PCE for D, p=1 

PCE for D, p=0 
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 Cn+1/2 coming into the reaction module is a 2-rv PC expansion 

 This needs to be converted to initial conditions for reaction 

 How is this transformation done? 

• reconstruct the Legendre polynomials (2-parameter) 

• create a sample (2-parameter) for the reaction equation (size N) 

• evaluate the Legendre polynomials at the sample points 

 Now we have N initial conditions for the N sample points 

 Next, run the reaction solver on each sample point 

 How to convert from the sample outputs back to the PC format? 

• the outputs will be fed into a Legendre regression analyzer 

• use either projection or least-squares approach 

• the results will be the PC coefficients 

• beware of scaling issues 

 Sampling and transformation can be handled by a software API 

Non-intrusive Method for the Reaction Equation 



9 

D=[0.0001,0.001], K=[0.1, 0.5] 

Response Surfaces for different diffusion ranges 

D=[0.001,0.01], K=[0.1, 0.5] 
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Numerical Results (D = [0.001, 0.01]; k = [0.1, 0.5]) 
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Purely intrusive Hybrid 

•  Purpose: investigate whether the hybrid method gives accurate answers 

•  Observations: convergence of hybrid at p=3, pure intrusive at p=2 

•  Hybrid gives more accurate answers due to the use of analytic reaction 

•  In practical cases, hybrid may be needed out of necessity 
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Another Test Problem: multi-species reactive transport 
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Reactive Transport 

Ai is a reactant participating in reaction i  

Ci is product of reaction i-1 

yi is the yield coefficient of reaction i 

ki  is the reaction rate constant in reaction i 

Example reactions in subsurface flow: TCE  DCE  VC  ETH 

Uncertain Paramters 

-diffusion, velocity (2 rv’s in L) 

-reaction rates (4 rv’s, n=4) 
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Stochastic Transport System 

Let c(x,t) be species concentration defined on a bounded domain  x [0,T]. 

Let                                                          and nonhomogeneous boundary d 

 : dispersivity;  vx, vy : velocity in x, y direction;  R : retardation factor 
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Stochastic Variational Form for theTransport System 
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Stochastic Discretization 
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Stochastic Discretization and Galerkin Projection 
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 Operator splitting 
• 2D transport using finite element (4 equations, decoupled) 
• Multi-species reaction (coupled, use analytic solution) 

 Test problem 

• Transport (PCE): dispersivity and velocity varies +/- 20% 

• Reaction (non-intrusive): +/-20% in reaction rates 

 At each time step 

• Partition the incoming global states into subproblems 

• Perform transport solves 

• Re-package solution into global states 

• Generate initial conditions for each reaction solve 

• Perform reaction solves (sampling) 

• Reconstruct reaction solutions into global states 

- Latin hypercube (least squares) 

- Sparse grid (projection) 

Hybrid UQ for multi-species reactive transport 



17  PCE order = 2 (same for p=3)         Note: absolute differences are small (~5e-4 relative to 1.5e-2) 

Numerical Results on 4-species reactive transport (means) 
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Numerical Results on 4-species reactive transport (std dev) 

 PCE order = 2 (same for p=3)         Note: absolute differences are small (~1e-4 relative to 5e-2) 
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Scalability analysis of Hybrid UQ methods 

 

transport 

….. 
….. 
….. 

Sample 1 

Sample 2 

Sample k 

Sample N 

….. 
….. 

….. 
….. 

 Transport: species doupled, PCE decoupled, multiple rhs systems 

 Reaction: each sample instantiation independent from the others 

 However, there are all-to-all communications 
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 Hybrid uncertainty quantification is appealing 

• accommodate embedded (intrusive) UQ methods 

• compatible with modern-day “plug-and-play” philosophy 

• facilitate progressive integration of advance UQ methods 

• sometimes out of necessity, e.g. 

- different time step requirement for each module 

- accommodate commercial/open source modules  

• may increase parallelism 

 Still there are many challenges 

• high dimensional uncertain parameter space 

• highly nonlinear parameter to output mapping 

• errors in propagating uncertainties 

• load balancing/fault tolerance on HPC 

Summary and future work 


