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Introduction

Shock waves appear generically in solutions of tran-
sonic flow problems when rarefaction waves reflect
off of sonic lines. Some examples of this occur in

(1) Transonic flow over an airfoil. When the flow
approaching an airfoil has a high subsonic
velocity, the expansion wave created by the
airfoil profile creates a local supersonic bubble
over the airfoil. This expansion wave reflects
off the sonic line as a compression which
typically forms a terminating shock (cf [1]).

(2) Supersonic flow of a gas hitting the corner of
an expanding duct. As shown in [3], the
rarefaction wave generated at the corner
reflects off a sonic line, and again a shock
forms.

(3) Weak shock reflection off thin wedges, known
as Guderley Mach reflection. Numerical
solutions in [2], [4] show that, not just a single
shock, but a sequence (perhaps infinite) of
shocks are formed by the reflection of
expansion waves off a sonic line.

In each of the example problems above, the ques-
tion arises: Where does the shock form?

Whether a shock forms on the sonic line or inside
the supersonic region is an open question – no
mathematical proof exists.

Also, until recently, numerical evidence supporting
either possibility has been inconclusive. Many nu-
merical solutions of the transonic airfoil problem
have appeared in the literature. These solutions ap-
pear to show that the shock begins on, or very close
to, the sonic line, but cannot distinguish between
these possibilities.

Our aim: determine where shock formation oc-
curs. We use high resolution finite difference meth-
ods and local grid refinement, and solve problems
which describe Examples (1) and (2) above.

The transonic airfoil problem

We solve the classical problem of flow over a thin
airfoil with an incoming freestream Mach number
which is slightly subsonic. The governing equation
is the steady transonic small disturbance equation
(TSDE), which can be written
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Here, φ(x, y) is the disturbance velocity potential,
where u = φx and v = φy are the disturbance veloc-
ity components in the x and y directions; M∞ is the
freestream Mach number; and γ is the ratio of spe-
cific heats. We use a high resolution finite difference
scheme (see [1]).
The following figure shows a numerical solution de-
picting the flowfield above a transonic airfoil at
M∞ = 0.8 and zero incidence. Contours of u-
velocity are shown; the inset plot shows an enlarge-
ment of the supersonic bubble region. The dashed
line in the inset plot is the sonic line.
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The shock appears to begin on, or very close to, the
sonic line. To clarify this, the figure below depicts
the solution in a small region near the shock forma-
tion point, where extreme local grid refinement was
used:
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As shown, the shock forms in the supersonic region.

The expanding duct problem

A problem which describes a slightly supersonic flow
hitting the corner of an expanding duct at t = 0 was
introduced in [3]. It consists of the unsteady TSDE,
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in the half space y > 0, together with initial data
given by

(u, v) =











































(0, 0) if x > −by,
(−1, −b) if x < −by,

and the no-flow boundary condition on y = 0,

v(x, 0, t) = 0.

Again u and v are velocity components in the x and
y directions, and the parameter b > 0.
This problem is self-similar, so the solution depends
only on the similarity variables ξ = x/t, η = y/t.
Writing the unsteady UTSDE in terms of ξ and η,
we get

−ξuξ − ηuη +



















1

2
u2



















ξ
+ vη = 0,

uη − vξ = 0.

This equation is hyperbolic when u < ξ + η2/4,
corresponding to supersonic flow, and elliptic when
u > ξ + η2/4, corresponding to subsonic flow. We
solve it numerically as described in [1].

This figure shows a numerical solution of the ex-
panding duct problem (u contours shown). An ex-
pansion wave reflects off the sonic line and a shock
wave is formed. The boundaries are curved because
of the self-similar variables used:
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From the figure, the shock appears to form on or
very close to the sonic line, at y/t ≈ 1.8.

The expanding duct (concl.)

To determine where the shock forms, in the next
figure we plot profiles of the function u − ξ + η2/4,
taken horizontally across the shock in a small region
close to the shock formation point:

-1.66 -1.64 -1.62 -1.6

-0.05

0

0.05

u-
(x

/t 
+

1/
4(

y/
t)

2 )

x/t

(a)  y/t = 1.77
(b)  y/t = 1.76
(c)  y/t = 1.751
(d)  y/t = 1.746
(e)  y/t = 1.742
(f)   y/t = 1.738

Subsonic

Supersonic

a
b c d fe

These profiles show that the shock (represented by
a jump) forms at approximately y/t = 1.742. The
jump is from supersonic to supersonic values of u −

ξ+η2/4, so the shock forms in the supersonic region.

Main result

We find that the shock forms strictly in the su-
personic region, due to coalescence of compres-
sion waves reflected from a sonic line. This is the
first time that this has been directly observed.
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