Analytical and Experimental Results for Inexact Methods EMPLE for Linear and Nonlinear Eigenvalue Problems **UNIVERSITY**[®] Daniel B. Szyld and Fei Xue

1. OUTLINE

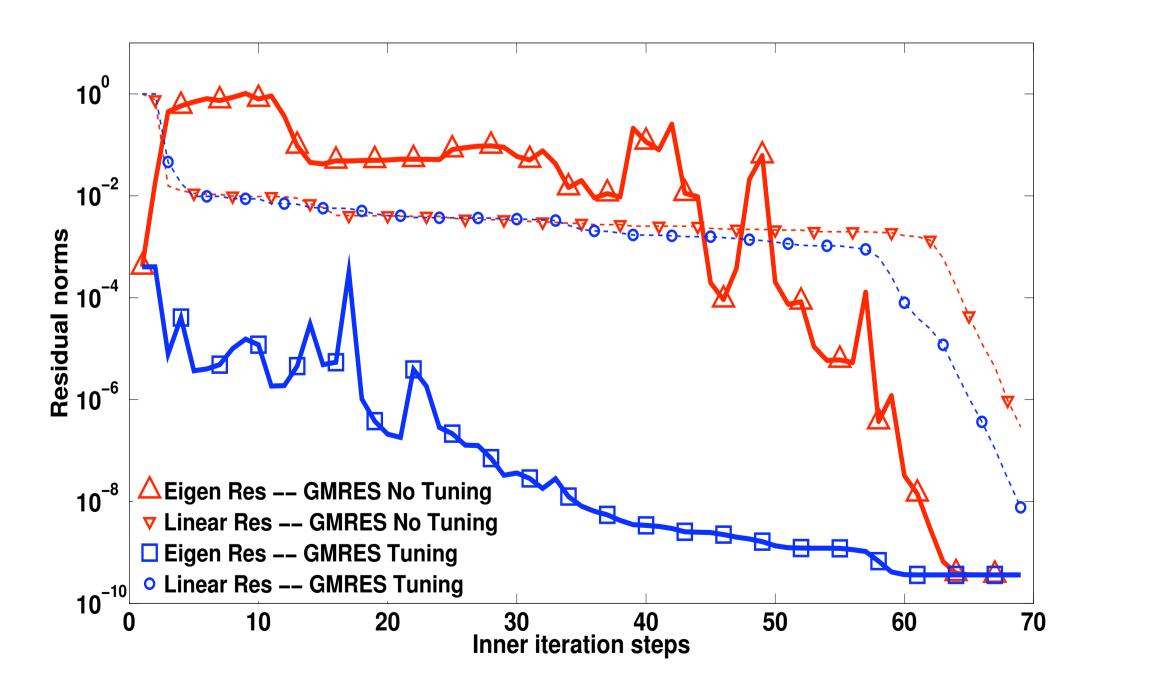
Single/multiple-vector iterations (inverse iteration, RQI, subspa etc) are widely used by engineers in a variety of applications. A sp preconditioner with "tuning" is important for fast iterative solution tems arising in inexact Rayleigh quotient iteration (IRQI).

We provide a better understanding of tuning in following aspects: • An improved local convergence analysis of IRQI

- A new result on the equivalence of the inner solves of IRQI and single-vector Jacobi-Davidson (JD) method
- Flexible GMRES with a special initial step competitive with GMRES with tuning
- IRQI with tuning competitive with shift-invert Arnoldi
- Tuning also applicable to IRQI for general nonlinear eigenvalue problems

2. MOTIVATION

- RQI converges to (λ, v) quadratically (non-Hermitian) or cubically (Hermitian).
- Consider the iterative solution of $(A \rho^{(i)}B)y = Bx^{(i)}$ in the *i*th RQI iteration $x^{(i)}$ — current eigenvector approximation $\rho^{(i)} = \frac{w^{(i)}Ax^{(i)}}{w^{(i)}Bx^{(i)}}$ — RQ.
- 1. iterative solution of this linear system mandatory for very large applications 2. preconditioned Krylov subspace solve $(A - \rho^{(i)}B)Q^{-1} \tilde{y} = Bx^{(i)}$ often leads to slow progress in eigenvector approximation for a large number of iterations
- Tuning resolves this difficulty
- 1. \mathbb{Q} is a low-rank modification of Q that satisfies $\mathbb{Q}x = Bx$; MVP involving \mathbb{Q}^{-1} by Sherman-Morrison-Woodbury formula at minimal extra cost
- 2. Steady progress in eigenvector approximation as the inner iteration proceeds

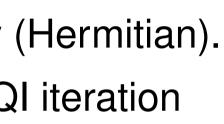


3. A NEW LOCAL CONVERGENCE ANALYSIS OF IRQI

- Known: a **fixed** inner solve tolerance \rightarrow at least linear or quadratic local convergence; some **decreasing** tolerance \rightarrow **quadratic** or **cubic** convergence.
- New: under some assumptions, a small **fixed** tolerance + Krylov subspace method with a tuned preconditioner \rightarrow **quadratic or cubic** convergence.

Temple University, Philadelphia, PA

ac	e	ite	era	tic	n,
pe	cia	al '	tyŗ	be	of
of	lir	lea	ar	sy	′S-



problem	inner	initial	<i>iter</i> 1	<i>iter</i> 2	<i>iter</i> 3	<i>iter</i> 4
	tol	err angle	err angle	err angle	err angle	err angle
k(m)3plates	7.5e-2	2.553e - 3	1.840e - 1	3.437e - 3	1.265e - 5	8.149e - 9
	5e-3		3.560e - 2	1.913e - 5	7.035e - 10	_
	exact		6.845e - 2	6.523e - 5	1.659e - 10	-
$thermo_dk(m)$	2.5e-2	1.165e - 2	9.874e - 3	3.782e - 3	8.426e - 6	1.632e - 10
	1e-3		3.008e - 3	1.272e - 6	1.825e - 11	-
	exact		1.443e - 3	3.336e - 6	2.037e - 11	-
$IFISS_{-1}$	1e-1	5.837e - 2	1.211e - 1	1.346e - 2	1.307e - 4	2.292e - 7
	1e-3		6.148e - 3	2.851e - 5	7.633e - 10	_
	exact		6.698e - 3	3.353e - 5	7.290e - 10	-

Table 1: Eigenvalue residual norms of outer iterates for non-Hermitian problems

problem	inner	initial	<i>iter</i> 1	<i>iter</i> 2	<i>iter</i> 3
	tol	err angle	err angle	err angle	err angle
bcsstk(m)13	5e-4	1.403e - 4	2.368e - 2	1.690e - 5	3.274e - 12
	1e - 6		2.993e - 4	6.818e - 11	-
	exact		2.400e - 4	$1.005e\!-\!11$	-
bcsstk(m)39	1e - 3	1.1626e - 3	2.0426e - 2	1.5086e - 5	4.2022e - 12
	2.5e - 6		1.3547e - 3	2.0753e - 9	-
	exact		1.8604e - 4	8.8151e - 12	-
$thermo_tk(c)$	1.25e - 2	8.8808e - 3	1.3759e - 2	3.7919e - 5	4.5113e - 12
	1.25e - 4		2.6774e - 3	1.8239e - 8	-
	exact		4.4756e - 4	1.2356e - 10	-

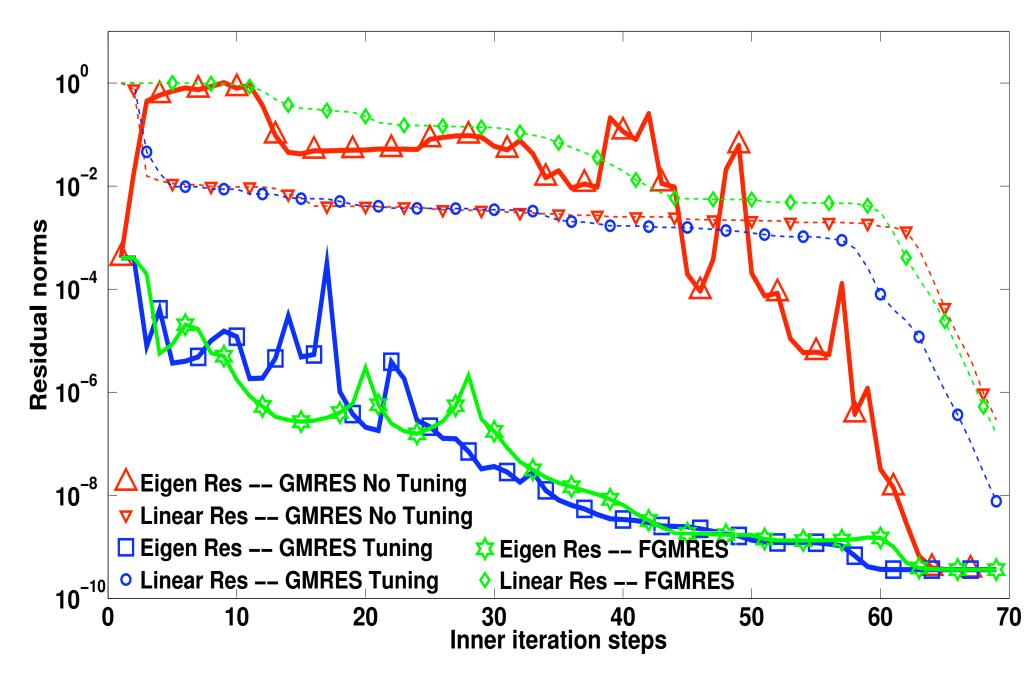
Table 2: Eigenvalue residual norms of outer iterates for Hermitian problems

4. EQUIVALENCE OF THE INNER SOLVES OF IRQI AND JD

- If both inner solves are done by the full orthogonalization method (FOM) with a tuned preconditioner \mathbb{Q} , they generate the same sequence of inner iterates.
- Tuning for the inner solves of IRQI implicitly achieves the way JD solves for a correction to obtain a better eigenvector approximation.

5. A SPECIAL FLEXIBLE GMRES INNER SOLVER FOR IRQI

- With an untuned Q, the initial inner iterate $y_1 = Q^{-1}Bx$ is usually a poor eigenvector approximation (much worse than x).
- A flexible GMRES with tuning in the 1st iteration and no tuning in subsequent iterations: performance similar to GMRES with tuning in every inner iteration; only one extra vector storage.
- Also closely connected to single-vector JD



With a tuned \mathbb{Q} , $y_1 = \mathbb{Q}^{-1}Bx = x \approx v$; tuning has no further impact afterwards.

6. PERFORMANCE COMPARISON WITH SHIFT-INVERT ARNOLDI

• For non-Hermitian problems, given the same initial eigenvector approximation $x^{(0)}$, our IRQI converges to (λ, v) at least twice as quickly as shift-invert Arnoldi, in terms of total inner iteration counts.

problem	utm1700a(b)		mhd4800a(b)		k(m)3plates	
method	AR/GCRO	RQ/GMRES	AR/GCRO	RQ/GMRES	AR/GCRO	RQ/GMRES
eigres	1.567e - 10	5.357e - 10	5.115e - 11	6.024e - 12	3.285e - 8	2.109e - 8
outer	5	3	8	3	7	2
inner	296	177	765	237	425	143
method	AR/IDR	RQ/IDR	AR/IDR	RQ/IDR	AR/IDR	RQ/IDR
eigres	1.735e - 10	1.111e - 10	3.085e - 11	2.155e - 12	8.913e - 8	2.536e - 7
outer	5	3	8	3	6	3
inner	552	320	1474	639	1047	569
problem	$thermo_dk(m)$		$IFISS_{-1}$		$IFISS_2$	
method	AR/GCRO	RQ/GMRES	AR/GCRO	RQ/GMRES	AR/GCRO	RQ/GMRES
eigres	1.251e - 8	7.839e - 9	7.859e - 10	7.945e - 10	1.182e - 09	1.845e - 10
outer	6	2	12	3	19	3
inner	992	251	965	174	3164	409
method	AR/IDR	RQ/IDR	AR/IDR	RQ/IDR	AR/IDR	RQ/IDR
eigres	3.148e - 5	_*	7.699e - 10	7.659e - 10	1.669e - 09	1.511e - 10
outer	4	—	12	3	19	3
inner	943	_	1705	253	8820	954

Table 3: *IRQI vs. shift-invert Arnoldi for computing one interior eigenpair*

* IDR(4) with a tuned preconditioner fails to converge to $\tau = 0.1$ for $thermo_{-}dk(m)$.

[1] DANIEL B. SZYLD AND FEI XUE, Efficient preconditioned inner solves for inexact Rayleigh quotient iteration and their connections to the single-vector Jacobi-Davidson method, SIAM Journal on Matrix Analysis and Applications. vol. 32 (2011) pp. 993–1018.

7. NONLINEAR EIGENVALUE PROBLEMS

- inner solve tolerances.
- work shown above for linear problems.

References

• Solve $T(\lambda)v = 0$ for (λ, v) , where $T(\cdot) : \Omega \to \mathbb{C}^{n \times n}$ is a nonlinear matrix-valued function; a very recent active research area, with a large variety of applications.

• Tuning also applicable to IRQI for nonlinear eigenvalue problems.

• Local convergence analysis of inexact inverse iteration, IRQI, single-vector JD and generalized Davidson (GD) method with several different sequences of

• Possible improved local convergence analysis of IRQI and JD, inspired by the

• Study of deflation and restarting techniques for inexact algorithms with subspace acceleration, e.g., full JD or the nonlinear Arnoldi method, for computing several eigenpairs; more robust convergence with random starting vector.