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Introduction

For the scalar conservation laws

ut + ▽ · F(u) = 0, u(x, 0) = u0(x). (1)

An important property of the entropy solution (which may be

discontinuous) is that it satisfies a strict maximum principle: If

M = max
x

u0(x), m = min
x

u0(x), (2)

then u(x, t) ∈ [m,M ] for any x and t.
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First order monotone schemes can maintain the maximum principle.

However, no higher order linear schemes can satisfy the maximum

principle (Godunov Theorem). Therefore, nonlinear schemes have been

designed. These include roughly two classes of schemes:

• TVD schemes. Most TVD (total variation diminishing) schemes also

satisfy strict maximum principle, even in multi-dimensions. TVD

schemes can be designed for any formal order of accuracy for

solutions in smooth, monotone regions. However, all TVD schemes

will degenerate to first order accuracy at smooth extrema.

• TVB schemes, ENO schemes, WENO schemes. These schemes do

not satisfy strict maximum principles, although they can be designed

to be arbitrarily high order accurate for smooth solutions.

Division of Applied Mathematics, Brown University



POSITIVITY-PRESERVING HIGH-ORDER RUNGE-KUTTA DISCONTINUOUS GALERKIN SCHEMES

The flowchart for designing a high order discontinuous Galerkin scheme

which obeys a strict maximum principle is as follows:

1. Start with un(x) which is high order accurate

|u(x, tn) − un(x)| ≤ C∆xp

and satisfy

m ≤ un(x) ≤ M, ∀x

therefore of course we also have

m ≤ ūn
j ≤ M, ∀j.
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2. Evolve for one time step to get un+1,prel(x) with its cell averages

satisfying

m ≤ ūn+1
j ≤ M, ∀j. (3)

3. Given (3) above, limit un+1,prel(x) to obtain un+1(x) (without

changing the cell averages) which

• satisfies the maximum principle

m ≤ un+1(x) ≤ M, ∀x;

• is high order accurate

|u(x, tn+1) − un+1(x)| ≤ C∆xp.
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Three major difficulties

1. The first difficulty is how to evolve in time for one time step to

guarantee

m ≤ ūn+1
j ≤ M, ∀j. (4)

This is very difficult to achieve. Previous works use one of the

following two approaches:
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• Use exact time evolution. This can guarantee

m ≤ ūn+1
j ≤ M, ∀j.

However, it can only be implemented with reasonable cost for linear

PDEs, or for nonlinear PDEs in one dimension. This approach was

used in, e.g., Jiang and Tadmor, SISC 1998; Liu and Osher,

SINUM 1996; Sanders, Math Comp 1988; Qiu and Shu, SINUM

2008; Zhang and Shu, SINUM 2010; to obtain TVD schemes or

maximum-principle-preserving schemes for linear and nonlinear

PDEs in one dimension or for linear PDEs in multi-dimensions, for

second or third order accurate schemes.
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• Use simple time evolution such as SSP Runge-Kutta or multi-step

methods. However, additional limiting will be needed on un(x)

which will destroy accuracy near smooth extrema.

We have figured out a way to obtain

m ≤ ūn+1
j ≤ M, ∀j

with simple Euler forward or SSP Runge-Kutta or multi-step methods

without losing accuracy on the limited un(x).
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2. The second difficulty is: given

m ≤ ūn+1
j ≤ M, ∀j

how to obtain accurate reconstruction un+1(x) which satisfy

m ≤ un+1(x) ≤ M, ∀x.

Previous work was mainly for relatively lower order schemes (second

or third order accurate), and would typically require an evaluation of

the extrema of un+1(x), which, for a piecewise polynomial of higher

degree and in multi-dimensions, is quite costly.

We have figured out a way to obtain such reconstruction with a very

simple limiter, which only requires the evaluation of un+1(x) at certain

pre-determined quadrature points and does not destroy accuracy.

Division of Applied Mathematics, Brown University



POSITIVITY-PRESERVING HIGH-ORDER RUNGE-KUTTA DISCONTINUOUS GALERKIN SCHEMES

3. The third difficulty is how to generalize the algorithm and result to 2D

(or higher dimensions). Algorithms which would require an evaluation

of the extrema of the reconstructed polynomials un+1(x, y) would not

be easy to generalize at all.

Our algorithm easily generalizes to 2D or higher dimensions, with

strict maximum-principle-satisfying property and provable high order

accuracy.
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High order schemes finite volume and DG schemes

Maximum-principle-satisfying DG and finite volume WENO schemes for

scalar conservation laws and passive convection in an incompressible

velocity field, and positivity-preserving (for density and pressure) DG and

finite volume WENO schemes for compressible Euler equations (Zhang

and Shu, SINUM 2010; JCP 2010a; JCP 2010b; Zhang, Xia and Shu, JSC

to appear; Zhang and Shu, JCP 2011), gaseous detonations (Wang,

Zhang, Shu and Ning, JCP to appear), and shallow water equations with

mixed wet/dry regions (Xing, Zhang and Shu, Advances in Water

Resources 2010; Xing and Shu, Advances in Water Resources 2011).
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We have a scheme which, for one dimensional scalar conservation laws,

satisfies a strict maximum principle and is uniformly high order accurate.

The technique has been generalized to the following situations maintaining

uniformly high order accuracy:

• 2D scalar conservation laws on rectangular or triangular meshes with

strict maximum principle (Zhang and Shu, JCP 2010a; Zhang, Xia and

Shu, JSC to appear).

• 2D incompressible equations in the vorticity-streamfunction

formulation (with strict maximum principle for the vorticity), and 2D

passive convections in a divergence-free velocity field with strict

maximum principle (Zhang and Shu, JCP 2010a; Zhang, Xia and Shu,

JSC to appear).
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• One and multi-dimensional compressible Euler equations maintaining

positivity of density and pressure (Zhang and Shu, JCP 2010b, 2011;

Zhang, Xia and Shu, JSC to appear).

• One and two-dimensional shallow water equations maintaining

non-negativity of water height and well-balancedness for problems

with dry areas (Xing, Zhang and Shu, Advances in Water Resources

2010; Xing and Shu, Advances in Water Resources 2011).
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• One and multi-dimensional compressible Euler equations with

gaseous detonations maintaining positivity of density, pressure and

reactant mass fraction, with a new and simplified implementation of

the pressure limiter. DG computations are stable without using the

TVB limiter (Wang, Zhang, Shu and Ning, JCP to appear).

• Positivity-preserving for PDEs involving global integral terms including

a hierarchical size-structured population model (Zhang, Zhang and

Shu, JCAM to appear) and Vlasov-Boltzmann transport equations

(Cheng, Gamba and Proft, Math Comp 2011).

• Positivity-preserving semi-Lagrangian schemes (Qiu and Shu, JCP to

appear; Rossmanith and Seal, JCP to appear).
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Numerical results

Example 1. Accuracy check. For the incompressible Euler equation in the

vorticity-streamfunction formulation. We clearly observe the designed

order of accuracy for this solution.

Table 1: Incompressible Euler equations. P 2 for vorticity, t = 0.5.

N×N L1 error order L∞ error order

16×16 5.12E-4 – 1.40E-3 –

32×32 3.75E-5 3.77 1.99E-4 2.81

64×64 3.16E-6 3.57 2.74E-5 2.86

128×128 2.76E-7 3.51 3.56E-6 2.94
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Example 2. The Sedov point-blast wave in two dimensions. The

computational domain is a square. For the initial condition, the density is

1, velocity is zero, total energy is 10−12 everywhere except that the

energy in the lower left corner cell is the constant 0.244816
∆x∆y

. γ = 1.4. See

Figure 1. The computational result is comparable to those in the literature,

e.g. those computed by Lagrangian methods.
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Figure 1: 2D Sedov blast, plot of density. T = 1. N = 160.

∆x = ∆y = 1.1
N

. TVB limiter parameters (M1,M2,M3,M4) =

(8000, 16000, 16000, 8000).
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Example 3. Shock diffraction problem. Shock passing a backward facing

corner. It is easy to get negative density and/or pressure below and to the

right of the corner. The setup is the following: the computational domain is

the union of [0, 1] × [6, 11] and [1, 13] × [0, 11]; the initial condition is a

pure right-moving shock of Mach = 5.09, initially located at x = 0.5

and 6 ≤ y ≤ 11, moving into undisturbed air ahead of the shock with a

density of 1.4 and pressure of 1. γ = 1.4 and the TVB limiter parameters

Mi = 100 for i = 1, 2, 3, 4. The density and pressure at t = 2.3 are

presented.
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Figure 2: Shock diffraction problem. Density: 20 equally spaced contour

lines from ρ = 0.066227 to ρ = 7.0668. Left: ∆x = ∆y = 1/32;

Right: ∆x = ∆y = 1/64.
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Concluding remarks

• We have obtained, for the first time, high order schemes for

multi-dimensional nonlinear scalar conservation laws and passive

convections in incompressible velocity fields that satisfy strict

maximum principle, using an easy procedure involving only slight

change from standard finite volume and DG schemes with SSP time

discretizations.

• This technique has been generalized to 2D triangles, and to positivity

preserving schemes for compressible Euler equations and shallow

water equations.
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