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Rare Events in Power Grids
Individual Outages in North America, 1984-1997

Power-tailed
Distribution

Pr{ } aX x cx−> ≈

2
Source: U.S.-Canada Power System Outage Task Force. 2004. Final Report on the August 
14, 2003 Blackout in the United States and Canada: Causes and Recommendations.
Adapted from John Doyle. 1999. Complexity and Robustness.



Problems Simulating Rare Events

# replications in which rare event occurs
Probability of rare eventγ ≡
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C t ti t i l t t b hibiti
Time Required to Achieve 1% Relative Error

(Assumes 1,000 replications per second)

Computer time to simulate rare events can be prohibitive

Rare Event 
Probability 

γ 

Simulation 
Runs 

n 

Required 
Time 

10-3 107 16.7 minutes0 0 6.7 u es
10-5 109 1.2 days 
10-7 1011 116 days 
10-9 1013 31.7 years 



Splitting
Splitting is a technique to improve the efficiency of 

rare-event simulation

Rare Event

rare-event simulation

System
Level

Level 2

Level 1

E.g.: Garvels, M. 2000 The splitting method in rare event simulation. Ph.D. thesis University of Twente, The Netherlands.
Time



Optimal Splitting
Problem
Minimize: ]ˆvar[γ

Minimize variance 
subject to fixed

such that:
][γ

1 1 m mb n b n T+ + ≤…

ni = number of runs for stage i

subject to fixed 
computing budget

Solution

i g
bi = average computing time for stage-i simulation
pi = probability of advancing from level i-1 to level i

Assuming probability of advancing from level j-1 to level j does 
not depend on starting state from level j-1, the optimal allocation 
satisfies:satisfies:
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Shortle, J., C. Chen, B. Crain, A. Brodsky, D. Brod, 2011. Optimal splitting for rare-event simulation. To 
appear in IIE Transactions.
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Splitting: Multiple Designs
Problem
Maximize: 1 2 1 3 1ˆ ˆ ˆ ˆ ˆ ˆmin Pr{ , , , }nγ γ γ γ γ γ< < <…

such that:
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=∑∑ Maximize prob. of 
choosing lowest rare-

bij = average time to simulate design-i stage-j
nij = number of runs for design-i stage-j
pij = prob. of advancing from level j-1 to j, design i
T i b d

choosing lowest rare-
event probability

Solution (2 designs): Optimal allocation satisfies:

T = computing budget
= estimator for rare-event probability, design iîγ
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Application to Power Grids

Objective: Use splitting to improve simulation 
efficiency in estimating rare-event probabilitiesefficiency in estimating rare event probabilities 

of major outages

IEEE 118-bus Test System



Blackout Model

Match generated 
power and load

Solve linearCheck

power and load

Start Solve linear
power flow
equations

network
connectivity

Start
Randomly

trip one line

Check for
line trips

End
If no new lines trip

(random step)

Similar to some models in literature, for example:
• Chen, J., J. Thorp, I. Dobson. 2005. Cascading dynamics and mitigation assessment in power system disturbances via a hidden failure model. 
Electrical Power & Energy Systems, 27, 318-326.
• Bae, K. J. Thorp. 1999. A stochastic study of hidden failures in power system protection. Decision Support Systems, 24, 259-268.



Example: Simple Model
• N identical parallel lines connecting two buses

Wh li f il i l d i ll di ib d h• When a line fails, its load is equally distributed among the 
remaining lines

• Can be solved analytically as a Markov chain.Can be solved analytically as a Markov chain.
• Results obtained for simple network provide insight into 

application of splitting method for more complex networks

N lines...

Load = LGenerator

Similar to analytical model in Dobson, Carreras, Newman (2005)



Blackout-size Distribution
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Splitting: Choice of Levels

• Evenly spaced by distance

# failed
lines Levels are evenly spaced

E l d b b bilit
time

lines

• Evenly spaced by probability
Probability of advancing from 

# failed
lines

one level to the next is 
approximately the same
(cascading effect implies

time
(cascading effect implies 

greater spacing at higher levels)



Alternate Level Function

• System state: (m, n)
– n = # of presently failed lines
– m = # of failed lines in previous iteration
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Simulation Efficiency

1 E‐17

Objective: Estimate γ = Pr{all lines fail}
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Levels: 10, 20, 30, ...

Levels: 3, 6, 10, 14, ...

Alternate level function

ˆvar[ ]γ
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Simulation Splitting Splitting

• Standard simulation inadequate
• Levels evenly spaced by prob. better than evenly spacedLevels evenly spaced by prob. better than evenly spaced
• Modified allocation better than equal-allocation splitting

Prob. of advancing from level j-1 to j depends on starting state from level j-1 (modified allocation not necessarily optimal)



Example: Mesh Network
Generator

Generator
Generator
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Simulation Efficiency

Objective: Estimate γ = Pr{50 lines fail}
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Prob. of advancing from level j-1 to j depends on starting state from level j-1 (modified allocation not necessarily optimal)



Example: Grid Network

= Generator

Each node has load L
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Simulation Efficiency

Objective: Estimate γ = Pr{32 lines fail (out of 40)}

1.E‐18 Evenly spaced levels

j γ { ( )}

1.E‐19

y p

Geometrically spacedˆvar[ ]γ

1.E‐20 No 
observations 
of rare event

1.E‐21
Standard 
Simulation

Equal‐allocation 
Splitting

Modified‐allocation 
Splitting

of rare event

Prob. of advancing from level j-1 to j depends on starting state from level j-1 (modified allocation not necessarily optimal)



Example: 118-bus System
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Line Failures in 20-Line Blackout
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Alternate level functions: Weight line failures by:
• Power flow through line

Line index

• Power flow through line
• Number lines connected to failed line
• Fraction of time line fails in k-line blackout



Summary and Conclusions

• Allocation method for computing budget in rare-event 
li isplitting

• Application to model of stochastic cascading line 
f ilfailures
– Simple analytical network. Choice of levels more important 

than choice of level function. Modified allocation methodthan choice of level function. Modified allocation method 
provides variance reduction.

– Alternate models: Cascading nature of blackouts suggests 
levels with increasing spacing. Modified allocation method 
generally provides variance reduction


