
Decomposition and Sampling Methods for Stochastic Optimization and Variational Problems

Uday V. Shanbhag (udaybag@illinois.edu), University of Illinois at Urbana-Champaign
DOE-DE-SC0003879 EXTENDING THE REALM OF OPTIMIZATION FOR COMPLEX SYSTEMS: UNCERTAINTY, COMPETITION, AND DYNAMICS (co-PIs: Tamer M. Başar, Prashant G. Mehta, and Sean P. Meyn)

Introduction

Consider a stochastic optimization problem given by

minimize E[ f (x;ω)]
subject to x ∈ K,

where f : Rn×R → R, f (x) ! E[ f (x;ω)] and K ⊆ Rn is a closed and convex set. Given x0 ∈ K and a
sequence {γk}, a stochastic approximation algorithm is given by

xk+1 = ΠK (xk− γk∇ f (xk;ωk)) . (1)

• Here, x0 ∈ X is a random initial point and we assume that E
[
‖x0‖2

]
< ∞.

• Let Fk ! {x0,ω0,ω1, . . . ,ωk−1} for k ≥ 1 and F0 = {x0}
• Furthermore, E[wk | Fk] = 0 for all k ≥ 0, where wk = ∇x f (xk;ωk)−∇ f (xk).

Assumption 1 (A1) The function f (·;ω) is convex on Rn for every ω ∈Ω, E[ f (x;ω)] is finite for every x ∈ Rn

and f is strongly convex with constant η and differentiable over K with Lipschitz gradients with constant L > 0.

Assumption 2 (A2) The stepsize is such that γk > 0 for all k. Furthermore, the following hold:
(a) ∑∞

k=0 γk = ∞ and ∑∞
k=0 γ2

k < ∞.

(b) For some ν > 0, the stochastic errors wk satisfy E
[
‖wk‖2 | Fk

]
< ν2 a.s for k ≥ 0.

Originally proposed by Robbins and Munro [5], also see recent monographs [3, 1]

Lemma 1 (Convergence of SA) Suppose (A1) and (A2) hold. Let {xk} be generated by algorithm (1). Then

E
[
‖xk+1− x∗‖2 | Fk

]
≤ (1−ηγk(2− γkL))‖xk− x∗‖2 + γ2

kν2 holds a.s.

• Choosing steplength sequence {γk} satisfying ∑∞
k=0 γk = ∞ and ∑∞

k=0 γ2
k < ∞.

• A subset of choices given by γk := βk−α, where β > 0 and α ∈ (0.5,1].
• Performance very sensitive to choices and problem parameters

• Goal: Develop adaptive steplength rules that are robust to variation in problem parameters

An adaptive recursive steplength scheme

1. Consider the following:

E
[
‖xk+1− x∗‖2]≤ (1−ηγk(2− γkL))E

[
‖xk− x∗‖2]+ γ2

kν2 for all k ≥ 0. (2)

2. When the stepsize is further restricted so that 0 < γk ≤ 1
L, we have 1−ηγk(2− γkL)≤ 1−ηγk.

3. Thus, for 0 < γk ≤ 1
L, inequality (2) yields

E
[
‖xk+1− x∗‖2]≤ (1−ηγk)E

[
‖xk− x∗‖2]+ γ2

kν2
︸ ︷︷ ︸

!ek+1(γ0,...,γk)

for all k ≥ 0. (3)

4. Thus, in the worst case, the error satisfies the following recursive relation:

ek+1(γ0, . . . ,γk) = (1−ηγk)ek(γ0, . . . ,γk−1)+ γ2
kν2.

Idea: Why not minimize the upper bound of the error?
If Gk !

{
z ∈ Rk : z j ∈ (0,1/L), j = 0, . . . ,k−1

}
, then the minimization problem is given by

min
(γ j)k

j=0∈Gk+1

ek+1(γ0, . . . ,γk)

Proposition 1 (Optimality of sequence within a range) Let e0 > 0 be such that η
2ν2 e0 ≤ 1

L and consider the
following recursive rule:

γ∗0 =
η

2ν2 e0, γ∗k = γ∗k−1

(
1− η

2
γ∗k−1

)
for all k ≥ 1. (4)

Then, the following hold:

(a) The error ek satisfies ek(γ∗0, . . . ,γ∗k−1) = 2ν2

η γ∗k for all k ≥ 0.

(b) For each k ≥ 1, the vector (γ∗0,γ∗1, . . . ,γ∗k−1) is the minimizer of the function ek(γ0, . . . ,γk−1) over Gk and
ek(γ0, . . . ,γk−1)− ek(γ∗0, . . . ,γ∗k−1)≥ ν2(γk−1− γ∗k−1)2.

Proposition 2 (Global convergence of RSA scheme) Suppose (A3) and (A4) hold and {γk} is generated by
the recursive scheme. Then, the sequence {xk} generated by algorithm (1) converges almost surely to x∗.
Proof idea: Suffices to show that ∑∞

k=0 γk = ∞ and ∑∞
k=0 γ2

k < ∞.

Addressing nonsmoothness

Given a convex function f (x), then a smooth approximation [4, 2] is defined as f̂ (x) ! IEZ f (x+Z).
Lemma 2 (Approximation quality) Let z ∈Rn be a random vector with a support given by an n-dim. ball cen-
tered at the origin with radius ε and E[z] = 0. Assume that f (x) is a convex function and there exists a C > 0
such that ‖g‖ ≤C for all g ∈ ∂ f (x) and x ∈ Rn. Then we have:

(a) f̂ is convex and differentiable over X , with ∇ f̂ (x) = E[g(x+ z)] ∀x ∈ X , and g(x + z) ∈ ∂ f (x + z) a.s. Fur-
thermore, ‖∇ f̂ (x)‖ ≤C for all x ∈ X .

(b) f (x)≤ f̂ (x)≤ f (x)+ εC for all x ∈ X .
Suppose z ∈ Rn has uniform distribution over the n-dimensional ball centered at the origin with radius ε and
density†

pu(z) =






1
cnεn for ‖z‖ ≤ ε,

0 otherwise.
and cn =

πn
2

Γ(n
2 +1)

,Γ
(n

2
+1

)
=






(n
2

)
! if n is even,

√
π n!!

2(n+1)/2 if n is odd.
(5)

• Need a Lipschitz constant to employ RSA
Lemma 3 (Lipschitz bounds on smooth approximation) Under the stated assumptions, we have

‖∇ f̂ (x)−∇ f̂ (y)‖ ≤ κ n!!
(n−1)!!

C
ε
‖x− y‖ for all x,y ∈ X ,

where κ = 2
π if n is even, and κ = 1 otherwise.

1. Lipshitz constant given by κ n!!
(n−1)!!

C
ε , grows at

√
n with n

2. We consider a smoothed approximation f̃ (x) ! E
[

f̂ (x;ω)
]

where f̂ (x;ω) ! IEZ[ f (x+ z;ω)].
3. A modified SA scheme where we sample in the product space of z and ω:

xk+1 = ΠK[xk− γk∇ f (xk + zk;ωk)] for k ≥ 0, (6)

4. The proposed RSA scheme is employed in this regime

Numerical results

Consider the following stochastic utility problem, minx∈X f (x), where f (x) ! E[ fi(x;ξ)] where fi(x;ξ) !
φ
(
∑n

i=1
( i

n +ξi
)

xi
)
, X ! {x ∈ Rn|x ≥ 0,∑n

i=1 xi = 1}, ξi are iid normals with mean zero and variance
one, The function φ(·) is a piecewise linear convex function given by φ(t) ! max1≤i≤m{vi + sit}, where
vi,si ∈ [0,1]. We choose n = 20,N = 4000 with smoothing parameter ε = 0.5 and regularization η = 0.5

Figure 1: Sensitivity of HSA (γk = 1/k) (L) and RSA (R) for three problem instances

Extensions

• Strongly monotone stochastic VIs: xk+1 := ΠK (xk− γkF(xk;ωk))) .
• Extensions to merely monotone SVIs: xk+1 := ΠK (xk− γk(∇ f (xk;ωk)+ηkxk)) .

Key: γk,ηk updated after every iteration
• Adaptive smoothing generalizations: where γk,εk updated after every iteration

Ref: F. Yousefian, A. Nedich, and U. V. Shanbhag, On stochastic gradient and subgradient methods with adap-
tive steplength sequences, To appear in Automatica, 2011

Cartesian monotone stochastic variational inequalities

Motivation: Two-period stochastic Nash games
• Consider an N−player deterministic Nash game in which the jth agent solves

A(z− j) maximize π j(z j;z− j)

subject to d(z) ≥ 0
z j ∈ Z j,

where π j(z j;z− j) is a convex differentiable function of z j for all z− j, d(z) is a concave differentiable function
of z and Z j is a closed and convex set.

• Then (z∗,λ∗) is an equilibrium if and only if (z∗,λ∗) is a solution of fixed-point problems:

z j = ΠZ j(z j− γF j(z,λ)) (7)
λ = ΠR+

m
(λ− γFλ(z,λ)), (8)

where Fi(z,λ) =−∇ziπi−∇zid(z)T λ and Fλ(z,λ) = d(z).
Challenges:
• Need for scalable distributed algorithms and decomposition schemes
• Projection problem costly since Zi is given by a set of constraints of cardinality |Ω| (as arising from two-

period stochastic programs)

Two-timescale bounded complexity dual scheme

Two timescale dual scheme: A dual method requires that for every update in the dual space, an exact primal
solution is required. In particular, for k ≥ 0, this leads to a set of iterations given by

zk
j = ΠZ j(z

k
j− γd(Fz(zk

j;zk
− j,λk)+ ε!zk

j)), for all j (9)
λk+1 = ΠR+

m
(λk− γp(Fλ(zk,λk)+ ε!λk)), (10)

where γp and γd are the primal and dual steplengths,
• Shortcoming: Need for exact primal solutions for every dual solution.
• Our intent: bounded complexity variant requiring K iterations of the primal scheme be made for a given

value of the dual iterates:

zt+1
j = ΠZ j(z

t
j− γd(Fz(zt

j;zt
− j,λk)+ ε!zt

j)), for all j, t = 0, . . . ,K−1. (11)

• We present results for a networked stochastic Nash game with Nf firms, Ng generating nodes and n = |Ω|
Proposition 3 (Error bounds for inexact-dual scheme) Consider the inexact dual scheme given by (11) and
(10). If d(z(λ)) is co-coercive with constant ε/‖B‖2, ‖B‖ ≤

√
Nf Ngn, ‖z‖ ≤Mz and γd satisfies γd < 2ε

2ε2+Nf Ngn,

then we have

‖λk−λ∗ε‖ ≤ qk
d‖λ0−λ∗ε‖k +

(
1−qk

d
1−qd

)((
2
ε2 +4

)
(Nf Ngn)1/2qK/2

p M2
z (1+(Nf Ngn)1/2qK/2

p )
)

.

Lemma 4 Consider the inexact dual scheme given by (11) and (10). If d(z(λ)) is co-coercive with constant
ε/‖B‖2, ‖z‖ ≤Mz and γd satisfies γd < 2ε

2ε2+Nf Ngn. Then for any nonnegative integers k,K ≥ 0, we have

‖zk
K− z∗ε‖ ≤ qK/2

p Mz +
√

Nf Ngn
ε

‖λk−λ∗ε‖, max(0,−d(zk
K))≤

√
Nf Ngn

(
qK/2

p Mz +
√

Nf Ngn
ε

‖λk−λ∗ε‖
)

.

Scalability Results
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Figure 2: Cutting plane methods for solving projection problem (L), Scalability (C,R)

Ref: A. Kannan, U.V. Shanbhag, and H. M. Kim, Addressing supply-side Risk in uncertain power markets:
stochastic generalized Nash models, scalable algorithms and error analysis, under second revision in Opti-
mization Methods and Software.
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