Decomposition and Sampling Methods for Stochastic Optimization and Variational Problems

Uday V. Shanbhag (udaybag@illinois.edu), University of Illinois at Urbana-Champaign

DOE-DE-SC0003879

EXTENDING THE REALM OF OPTIMIZATION FOR COMPLEX SYSTEMS: UNCERTAINTY, COMPETITION, AND DYNAMICS (co-PIs: Tamer M. Başar, Prashant G. Mehta, and Sean P. Meyn)

Introduction	
Consider a stochastic optimization problem given by	
minimize $\mathbb{E}[f(x; \omega)]$ subject to $x \in K$,	
where $f : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$, $f(x) \triangleq \mathbb{E}[f(x; \omega)]$ and $K \subseteq \mathbb{R}^n$ is a closed and convex set. Given x_0 sequence $\{\gamma_k\}$, a stochastic approximation algorithm is given by	$K \in K$ and a
$x_{k+1} = \Pi_K \left(x_k - \gamma_k \nabla f(x_k; \boldsymbol{\omega}_k) \right).$	(1)
• Here, $x_0 \in X$ is a random initial point and we assume that $\mathbb{E}[x_0 ^2] < \infty$.	
• Let $\mathcal{F}_k \triangleq \{x_0, \omega_0, \omega_1, \dots, \omega_{k-1}\}$ for $k \ge 1$ and $\mathcal{F}_0 = \{x_0\}$ • Furthermore, $\mathbb{E}[w_k \mid \mathcal{F}_k] = 0$ for all $k \ge 0$, where $w_k = \nabla_x f(x_k; \omega_k) - \nabla f(x_k)$.	
Assumption 1 (A1) The function $f(\cdot; \omega)$ is convex on \mathbb{R}^n for every $\omega \in \Omega$, $\mathbb{E}[f(x; \omega)]$ is finite for ϵ and f is strongly convex with constant η and differentiable over K with Lipschitz gradients with con-	
Assumption 2 (A2) The stepsize is such that $\gamma_k > 0$ for all k. Furthermore, the following hold:	
$a)\sum_{k=0}^{\infty}\gamma_k = \infty \text{ and } \sum_{k=0}^{\infty}\gamma_k^2 < \infty.$	
(b) For some $v > 0$, the stochastic errors w_k satisfy $\mathbb{E}[w_k ^2 \mathcal{F}_k] < v^2$ a.s for $k \ge 0$. Originally proposed by Robbins and Munro _[9] , also see recent monographs _[3,1]	
Lemma 1 (Convergence of SA) Suppose (A1) and (A2) hold. Let $\{x_k\}$ be generated by algorithm	n (1) Then
$\mathbb{E}[\ x_{k+1} - x^*\ ^2 \mid \mathcal{F}_k] \le (1 - \eta \gamma_k (2 - \gamma_k L)) \ x_k - x^*\ ^2 + \gamma_k^2 v^2 \text{ holds a.s.}$	
 Choosing steplength sequence {γ_k} satisfying Σ_{k=0}[∞] γ_k = ∞ and Σ_{k=0}[∞] γ_k² < ∞. A subset of choices given by γ_k := β_k-α, where β > 0 and α ∈ (0, 5, 1). Performance very sensitive to choices and problem parameters 	
Goal: Develop adaptive steplength rules that are robust to variation in problem parameter	rs
An adaptive recursive steplength scheme	
1. Consider the following:	
$\mathbb{E}\big[\ x_{k+1} - x^*\ ^2\big] \leq (1 - \eta \gamma_k (2 - \gamma_k L))\mathbb{E}\big[\ x_k - x^*\ ^2\big] + \gamma_k^2 \mathbf{v}^2 \text{ for all } k \geq 0.$	(2)
2. When the stepsize is further restricted so that $0 < \gamma_k \leq \frac{1}{L}$, we have $1 - \eta \gamma_k (2 - \gamma_k L) \leq 1 - \eta \gamma_k$. 3. Thus, for $0 < \gamma_k \leq \frac{1}{L}$, inequality (2) yields	

 $\mathbb{E}\left[\|x_{k+1}-x^*\|^2\right] \leq \underbrace{(1-\eta\gamma_k)\mathbb{E}\left[\|x_k-x^*\|^2\right]+\gamma_k^2\nu^2}_{k}$ for all $k \ge 0$. $\triangleq e_{k+1}(\gamma)$ $(,...,\gamma_k)$

4. Thus, in the worst case, the error satisfies the following recursive relation:

 $e_{k+1}(\gamma_0,\ldots,\gamma_k) = (1-\eta\gamma_k)e_k(\gamma_0,\ldots,\gamma_{k-1}) + \gamma_k^2 \mathbf{v}^2.$

Idea: Why not minimize the upper bound of the error?

If $\mathbb{G}_k \triangleq \left\{z \in \mathbb{R}^k : z_j \in (0, 1/L), j = 0, \dots, k-1\right\}$, then the minimization problem is given by

 $\min_{(\mathbf{\gamma}_i)_{i=0}^k \in \mathbb{G}_{k+1}} e_{k+1}(\mathbf{\gamma}_0, \dots, \mathbf{\gamma}_k)$

Proposition 1 (Optimality of sequence within a range) Let $e_0 > 0$ be such that $\frac{\eta}{2v^2}e_0 \leq \frac{1}{L}$ and consider the following recursive rule:

$$\frac{\eta}{2\nu^2}e_0, \qquad \qquad \gamma_k^* = \gamma_{k-1}^* \left(1 - \frac{\eta}{2}\gamma_{k-1}^*\right) \quad \text{for all } k \ge 1. \tag{4}$$

Then, the following hold:

(a) The error e_k satisfies $e_k(\gamma_0^*, \dots, \gamma_{k-1}^*) = \frac{2v^2}{\eta}\gamma_k^*$ for all $k \ge 0$.

 $\gamma_0^* =$

(b) For each $k \geq 1$, the vector $(\gamma_0^*, \gamma_1^*, \dots, \gamma_{k-1}^*)$ is the minimizer of the function $e_k(\gamma_0, \dots, \gamma_{k-1})$ over \mathbb{G}_k and $e_k(\gamma_0, \dots, \gamma_{k-1}) - e_k(\gamma_0^*, \dots, \gamma_{k-1}^*) \geq v^2(\gamma_{k-1} - \gamma_{k-1}^*)^2$.

Proposition 2 (Global convergence of RSA scheme) Suppose (A3) and (A4) hold and $\{\gamma_k\}$ is generated by the recursive scheme. Then, the sequence $\{x_k\}$ generated by algorithm (1) converges almost ost surely to x^* **Proof idea:** Suffices to show that $\sum_{k=0}^{\infty} \gamma_k = \infty$ and $\sum_{k=0}^{\infty} \gamma_k^2 < \infty$.

Addressing nonsmoothness

Given a convex function f(x), then a smooth approximation [4, 2] is defined as $\hat{f}(x) \triangleq \mathbb{E}_Z f(x+Z)$. Lemma 2 (Approximation quality) Let $z \in \mathbb{R}^n$ be a random vector with a support given by an *n*-dim. ball centered at the origin with radius ε and $\mathbb{E}[z] = 0$. Assume that f(x) is a convex function and there exists a C > 0such that $||g|| \leq C$ for all $g \in \partial f(x)$ and $x \in \mathbb{R}^n$. Then we have

(a) \hat{f} is convex and differentiable over X, with $\nabla \hat{f}(x) = \mathbb{E}[g(x+z)] \ \forall x \in X$, and $g(x+z) \in \partial f(x+z)$ a.s. Furthermore, $\|
abla \hat{f}(x)\| \leq C$ for all $x \in X$

(b) $f(x) \leq \hat{f}(x) \leq f(x) + \varepsilon C$ for all $x \in X$. Suppose $z \in \mathbb{R}^n$ has uniform distribution over the *n*-dimensional ball centered at the origin with radius ε and density^{*}

$$\begin{cases} \frac{1}{c_n \varepsilon^n} \text{ for } \|z\| \leq \varepsilon, \\ 0 \quad \text{otherwise.} \end{cases} \text{ and } c_n = \frac{\pi^n}{\Gamma(\frac{n}{2}+1)}, \Gamma\left(\frac{n}{2}+1\right) = \begin{cases} \left(\frac{n}{2}\right)! & \text{if } n \text{ is even,} \\ \sqrt{\pi} \frac{n!!}{2^{(n+1)/2}} & \text{if } n \text{ is odd.} \end{cases}$$

Need a Lipschitz constant to employ RSA

 $p_u(z) =$

Lemma 3 (Lipschitz bounds on smooth approximation) Under the stated assumptions, we have $n!! _ C_{\parallel r}$ $\|\nabla \hat{c}(\cdot) - \nabla \hat{c}(\cdot)\| < \epsilon$ 6--- $v \in X$,

$$\|\nabla f(x) - \nabla f(y)\| \le \kappa \frac{1}{(n-1)!!} \varepsilon \|x - y\| \quad \text{for all } x, y$$

where $\kappa = \frac{2}{\pi}$ if *n* is even, and $\kappa = 1$ otherwise.

1. Lipshitz constant given by $\kappa \frac{n!!}{(n-1)!!} \frac{C}{\epsilon}$, grows at \sqrt{n} with n

2. We consider a smoothed approximation $\tilde{f}(x) \triangleq \mathbb{E}[\hat{f}(x;\omega)]$ where $\hat{f}(x;\omega) \triangleq \mathbb{E}_{Z}[f(x+z;\omega)]$. 3. A

modified SA scheme where we sample in the product space of
$$z$$
 and ω :

$$x_{k+1} = \Pi_K[x_k - \gamma_k \nabla f(x_k + \mathbf{z}_k; \mathbf{\omega}_k)] \qquad \text{for } k \geq 0,$$

4. The proposed RSA scheme is employed in this regime

Numerical results

Consider the following stochastic utility problem, $\min_{x \in X} f(x)$, where $f(x) \triangleq \mathbb{E}[f_i(x;\xi)]$ where $f_i(x;\xi) \triangleq \phi\left(\sum_{i=1}^n (\frac{i}{n} + \xi_i) x_i\right), X \triangleq \{x \in R^n | x \ge 0, \sum_{i=1}^n x_i = 1\}, \xi_i \text{ are iid normals with mean zero and variance } x < 0\}$ $\psi(z_{i=1}, z_{i} + y_{i}, n_{i})$, $x_{i} \in [0, 1]$, $x_{i} = 0$, $z_{i=1}, n_{i} = 0$, $y_{i} \in [0, 1]$, $y_{i} \in [0, 1]$, $x_{i} \in [0, 1]$. We choose n = 20, N = 4000 with smoothing parameter k = 0.5 and regularization $\eta = 0.5$

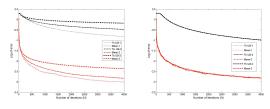


Figure 1: Sensitivity of HSA ($\gamma_k = 1/k$) (L) and RSA (R) for three problem instances

Extensions

(3)

(5)

(6)

- Strongly monotone stochastic VIs: $x_{k+1} := \Pi_K (x_k \gamma_k F(x_k; \omega_k)))$
- Extensions to merely monotone SVIs: $x_{k+1} := \prod_{K} (x_k \gamma_k (\nabla f(x_k; \omega_k) + \eta_k x_k))$.
- Key: γ_k , η_k updated after every iteration

• Adaptive smoothing generalizations: where γ_k, ϵ_k updated after every iteration

Ref: F. Yousefian, A. Nedich, and U. V. Shanbhag, On stochastic gradient and subgradient methods with adaptive steplength sequences, To appear in Automatica, 2011

Cartesian monotone stochastic variational inequalities

Motivation: Two-period stochastic Nash games Conside

 Consider an 	N-player deterministic	Nash game in which the <i>j</i> th agent solves	
	$A(z_{-j})$	maximize $\pi_j(z_j; z_{-j})$	
		subject to $\begin{array}{c} d(z) \geq 0 \\ z_j \in \mathbf{Z}_j, \end{array}$	
	z_{-j}) is a convex difference of a closed and convex s	ntiable function of z_j for all z_{-j} , $d(z)$ is a conset.	cave differentiable function
• Then (z^*,λ^*)	is an equilibrium if and	I only if (z^*,λ^*) is a solution of fixed-point pro	blems:
		$z_j = \Pi_{\mathbf{Z}_j}(z_j - \gamma \mathbf{F}_j(z, \lambda))$	(7)

 $\boldsymbol{\lambda} = \boldsymbol{\Pi}_{\mathbb{R}_m^+}(\boldsymbol{\lambda} - \boldsymbol{\gamma} \mathbf{F}_{\boldsymbol{\lambda}}(\boldsymbol{z},\boldsymbol{\lambda})),$ (8)

where $\mathbf{F}_i(z, \lambda) = -\nabla_{z_i} \pi_i - \nabla_{z_i} d(z)^T \lambda$ and $\mathbf{F}_{\lambda}(z, \lambda) = d(z)$. Challenges:

Need for scalable distributed algorithms and decomposition schemes

• Projection problem costly since \mathbf{Z}_i is given by a set of constraints of cardinality $|\Omega|$ (as arising from twoperiod stochastic programs)

Two-timescale bounded complexity dual scheme

Two timescale dual scheme: A dual method requires that for every update in the dual space, an exact primal solution is required. In particular, for $k \ge 0$, this leads to a set of iterations given by

$$\begin{split} z_{j}^{k} &= \Pi_{\mathbf{Z}_{j}}(z_{k}^{k} - \gamma_{d}(\mathbf{F}_{z}(z_{k}^{k}; z_{-j}^{k}, \lambda^{k}) + \varepsilon^{\ell} z_{j}^{k})), \text{ for all } j \qquad (9) \\ \lambda^{k+1} &= \Pi_{\mathbf{R}_{m}^{k}}(\lambda^{k} - \gamma_{\rho}(\mathbf{F}_{\lambda}(z^{k}, \lambda^{k}) + \varepsilon^{\ell} \lambda^{k})), \end{split}$$

where γ_p and γ_d are the primal and dual steplengths,

Shortcoming: Need for exact primal solutions for every dual solution.

• Our intent: bounded complexity variant requiring K iterations of the primal scheme be made for a given value of the dual iterates:

$$z_{j}^{t+1} = \Pi_{\mathbf{Z}_{j}}(z_{j}^{t} - \gamma_{d}(\mathbf{F}_{z}(z_{j}^{t}; z_{-j}^{t}, \lambda^{k}) + \varepsilon^{\ell} z_{j}^{t})), \text{ for all } j, t = 0, \dots, K-1.$$
(11)

• We present results for a networked stochastic Nash game with N_f firms, N_e generating nodes and $n = |\Omega|$ Proposition 3 (Error bounds for inexact-dual scheme) Consider the inexact dual scheme given by (11) and (10). If $d(z(\lambda))$ is co-coercive with constant $\varepsilon/||B||^2$, $||B|| \le \sqrt{N_f N_g n}$, $||z|| \le M_z$ and γ^d satisfies $\gamma_d < \frac{2e^2}{2e^2 + N_f N_g n}$. then we have

$$\|\lambda^k - \lambda^*_{\varepsilon}\| \le q_d^k \|\lambda^0 - \lambda^*_{\varepsilon}\|^k + \left(\frac{1-q_d^k}{1-q_d}\right) \left(\left(\frac{2}{\varepsilon^2} + 4\right) (N_f N_g n)^{1/2} q_p^{K/2} M_z^2 (1 + (N_f N_g n)^{1/2} q_p^{K/2}) \right).$$

Ima 4 Consider the inexact dual scheme given by (11) and (10). If $d(z(\lambda))$ is co-coercive with constant $\epsilon/\|B\|^2$, $\|z\| \le M_z$ and γ^d satisfies $\gamma_d < \frac{2\epsilon}{2\epsilon^2 + N_f N_g n}$. Then for any nonnegative integers $k, K \ge 0$, we have

$$\|z_K^k - z_{\varepsilon}^*\| \leq q_p^{K/2} M_z + \frac{\sqrt{N_f N_g n}}{\epsilon} \|\lambda^k - \lambda_{\varepsilon}^*\|, \quad \max(0, -d(z_K^k)) \leq \sqrt{N_f N_g n} \left(q_p^{K/2} M_z + \frac{\sqrt{N_f N_g n}}{\epsilon} \|\lambda^k - \lambda_{\varepsilon}^*\|\right).$$

Scalability Results

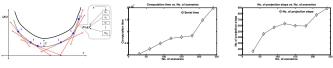


Figure 2: Cutting plane methods for solving projection problem (L), Scalability (C,R)

Ref: A. Kannan, U.V. Shanbhag, and H. M. Kim, Addressing supply-side Risk in uncertain power markets. d Nash mo calable algorithms and error analysis, under second revision in Optimization Methods and Software.

ledge the support of DOE Award DOE-DE-SC0003879 and NSF EAGER: 09848905

DOE PI Meeting 2011