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Introduction

Consider a stochastic optimization problem given by

minimize E[f(x;®)]

subjectto x € K,

where f:R" xR — R, f(x) £ E[f(x;0)] and K C R" is a closed and convex set. Given xo € K and a
sequence {Y;}, a stochastic approximation algorithm is given by
Xer1 = i (0 — YV f (v o)) - (1)
o Here, xo € X is a random initial point and we assume that E [||xo|?] < .
o Let F £ {x0,0,01,...,0 1} fork > 1and % = {xo}
o Furthermore, E[wy | %] = 0 for all k > 0, where wy = V. f (xi; o) — V.f (xc).-

Assumption 1 (A1) The function f(-;®) is convex on R" for every ® € Q, E[f(x; )] is finite for every x € R"
and f is strongly convex with constantm and differentiable over K with Lipschitz gradients with constant L > 0.

Assumption 2 (A2) The stepsize is such thaty, > 0 for all k. Furthermore, the following hold:

(@) Lio Vi = o and Y21} < eo.

(b) For some v > 0, the stochastic errors wy. satisfy E[||wi||* | %] < v? a.s fork > 0.

Originally proposed by Robbins and Munro s, also see recent monographs s, 1)

Lemma 1 (Convergence of SA) Suppose (A1) and (A2) hold. Let {x;} be generated by algorithm (1). Then

E[[lxest — x| | F] < (1 =mye(2 —%L))||xi —x7[|> + ¥2v2 holds a.s.
o Choosing steplength sequence {;} satisfying Y5,V = oo and ):;“707} < oo,
o A subset of choices given by y; := Pk *, where B > 0 and o € (0.5, 1].
e Performance very sensitive to choices and problem parameters
e Goal: Develop adaptive steplength rules that are robust to variation in problem parameters

An adaptive recursive steplength scheme

1. Consider the following:
E[ [t =x7] < (1=m9(2 = L)) E [l —7[|*] +1zv*for all k > 0. @

2. When the stepsize is further restricted so that 0 <y, < { we have | —ny(2—yl) < 1-My.
3.Thus, for 0 <y < ,l inequality (2) yields
E[|Pst =] < (1 =y)E[|lxe—x ] + v forallk >0. (3)
o rl R

4. Thus, in the worst case, the error satisfies the following recursive relation:
€1 (Y0, %) = (1 =Y ek (Yos -+, Yemr) + %V

Idea: Why not minimize the upper bound of the error?
I1Gy 2 {z€Rk:z;€(0,1/L), j=0,...,k— 1}, then the minimization problem is given by

min e (Yo,-- -, Vi)
b e
i—0€Gks1

7j

Proposition 1 (Optimality of sequence within a range) Let ¢y > 0 be such that zg—zeg < ,l and consider the
following recursive rule:

%:%eo, w:ﬁ,l(pgﬂ,l) forallk > 1. @

Then, the following hold:

(a) The error ey satisfies ex(Yy, - .-, Y1) = %2*{; for allk > 0.

(b) For each k > 1, the vector (Yy,Y;,-.,Yi_,) is the minimizer of the function ex(Yo,...,Yc—1) over Gy and
Yoy V1) = €k(¥os -5 Vior) = V(%1 —%iop) ™

Proposition 2 (Global convergence of RSA scheme) Suppose (A3) and (A4) hold and {,} is generated by
the recursive scheme. Then, the sequence {x;} generated by algorithm (1) converges almost surely to x*.

Proof idea: Suffices to show that YV« = o and ¥p_o V7 < co.

Addressing nonsmoothness

Given a convex function f(x), then a smooth approximation [4, 2] is defined as f(x) £ E,f(x+Z).
Lemma 2 (Approximation quality) Let z € R" be a random vector with a support given by an n-dim. ball cen-
tered at the origin with radius € and E[z] = 0. Assume that f(x) is a convex function and there exists a C > 0
such that ||g|| < C for all g € df(x) and x € R". Then we have:
(a) f is convex and differentiable over X, with VF(x) = Elg(x+2)] Vx € X, and g(x +2z) € f (x+2) a.s. Fur-
thermore, ||V f(x)|| <C forallx € X.
(b) f(x) < f(x) < f(x)+eC forallx € X.
Suppose z € R" has uniform distribution over the n-dimensional ball centered at the origin with radius € and
density"
o for [lz] <e, o " (%) if n is even,
pu(z) = . and ”"ZW’F(EH) = . (5)
0 otherwise. 2 \/77,2(37,‘ if n is odd.
o Need a Lipschitz constant to employ RSA
Lemma 3 (Lipschitz bounds on smooth approximation) Under the stated assumptions, we have

V76 =90l < Ko e

[Jx—y]| forallx,y € X,

where K = % ifn is even, and x = 1 otherwise.
1. Lipshitz constant given by K(n’*’iyl’)”% grows at \/n with n
2. We consider a smoothed approximation f(x) £ E[f(x;®)] where f(x;0) £ Ez[f(x+z 0)].
3. A modified SA scheme where we sample in the product space of z and :
Xer1 = g =V f(a+zo)]  fork >0, (6)

4. The proposed RSA scheme is employed in this regime

EXTENDING THE REALM OF OPTIMIZATION FOR COMPLEX SYSTEMS: UNCERTAINTY, COMPETITION, AND DYNAMICS (co-Pls: Tamer M. Basar, Prashant G. Mehta, and Sean P. Meyn)

Numerical results

Consider the following stochastic utility problem, min.cx f(x), where f(x) £ E[fi(x;E)] where fi(x;E) 2
(X (E+€)x), X 2 {x € R"x > 0,Y/,x; = 1}, & are iid normals with mean zero and variance

one, The function ¢(-) is a piecewise linear convex function given by ¢(f) £ max;<i<,{v: + sit}, where
vi,si € [0,1]. We choose n = 20,N = 4000 with smoothing parameter € = 0.5 and regularization n = 0.5
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Figure 1: Sensitivity of HSA (Y, = 1/k) (L) and RSA (R) for three problem instances

Extensions

o Strongly monotone stochastic VIs: xg := Ik (x¢ — Vel (X3 0))) -
o Extensions to merely monotone SVIs: xi 1 := Ik (x¢ — Ye(V.f (x; ) + M) ) -
Key: v, M« updated after every iteration
o Adaptive smoothing generalizations: where Y, €, updated after every iteration
Ref: F. Yousefian, A. Nedich, and U. V. Shanbhag, On stochastic gradient and subgradient methods with adap-
tive steplength sequences, To appear in Automatica, 2011

Cartesian monotone stochastic variational inequalities

Motivation: Two-period stochastic Nash games
o Consider an N —player deterministic Nash game in which the jth agent solves

AG) maximize ;(z;;z )
d(z) >0

subject to
! €7

where T;(z;:z—;) is a convex differentiable function of z; for all z_;, d(z) is a concave differentiable function
of zand Z; is a closed and convex set.
e Then (z*,\*) is an equilibrium if and only if (z*,A*) is a solution of fixed-point problems:
2j=1gz,(z;—VF(z,A)) @
A=y (A —1Fi(z, 1)),
where Fi(z,A) = =V, — V,d(z)"A and Fy(z,A) = d(z).
Challenges:
o Need for scalable distributed algorithms and decomposition schemes
o Projection problem costly since Z; is given by a set of constraints of cardinality |Q| (as arising from two-
period stochastic programs)

=3

Two-timescale bounded complexity dual scheme

Two timescale dual scheme: A dual method requires that for every update in the dual space, an exact primal
solution is required. In particular, for k > 0, this leads to a set of iterations given by
=Tl (& — va(F.(: 2, M) +€'2))), forall j 9
AL = Ty (M — v, (Fa(2, 1) +€'A%)), (10)
where 7y, and y, are the primal and dual steplengths,
e Shortcoming: Need for exact primal solutions for every dual solution.
e Our intent: bounded complexity variant requiring K iterations of the primal scheme be made for a given
value of the dual iterates:
4 =Ty (2 — Ya(Fa(2:2 M) +€2)), forall j,t =0,...,K— 1. (11)

o We present results for a networked stochastic Nash game with N firms, N, generating nodes and n = |Q|

Proposition 3 (Error b ds for i dual sct Consider the inexact dual scheme given by (11) and
(10). Ifd(z(M)) is co-coercive with constante/||B||, || B|| < \/NyNgn, ||z|| < M, and ¥ satisfies v, < ﬁljrmu
then we have
‘ 1-4 2 p
-l < a0t (1= (5v4) o 2 20+ i 28

Lemma 4 Consider the inexact dual scheme given by (11) and (10). Ifd(z())) is co-coercive with constant
e/||B|1%, ||zl < M, and ¥ satisfies Ys < . Then for any nonnegative integers k,K > 0, we have

\/NyNgn
| < qfPu+ Y=

€

2¢
2624+ NyNgn

k-2 e

. 'N¢N,n
WAL, max(0,—d(2h) < /NN <q§/2M,+ VN —x;n) A

Scalability Results
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Figure 2: Cutting plane methods for solving projection problem (L), Scalability (C,R)

Ref: A. Kannan, U.V. Shanbhag, and H. M. Kim, Addressing supply-side Risk in uncertain power markets:
stochastic generalized Nash models, scalable algorithms and error analysis, under second revision in Opti-
mization Methods and Software.
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