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Phenomena in Large Scale Simulations aB
' Jeff Schnerder, Barnabas Poczos, Liang Xiong, Dougal Sutherland ’ ‘

JHU Turbulence Dataset [3] PROBLEM . :
1024 gric Given a petabyte of simulation data Benchmark 8-class scene classification problem [5]
F - what interesting happened?
» how often did it happen? SAMPLE IMAGES
- when? where? » Use SIFT features from black&white images forest
CONCEPT  Reduce dimensionality to 19 with PCA “Cra
. A “phenomenon’” is a spatial group of data points from « Approximately 3§O images In each of 8 categories
a grid or particle-based simulation * 10-fold cross validation
* Need machine learning algorithms (anomaly detectors,
classifiers) to operate on groups of data points « SDM Accuracy: 89.95%
* Treat a group as a set of I.1.d. samples from an  Best published with similar feature set: 85.60%
underlying feature distribution for the groups - Best published using spatial dependence, color:  91.57%

« Develop algorithms to do machine learning on
distributions using only samples from them

Finding Vortices in JHU Turbulence Simulation [5]

METHOD sample positives
* Propose Support Distribution Machine (SDM) * Features are velocity field, pressure, distance from center TS e 175557 155222200,
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Z ” - Develop non-parametric methods to estimate inner products * Anomaly detection: train 1-class SDM on 100 randomly R B AN I SRS N Sty "
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petween distributions using I.1.d. samples from them chosen regions RIS A \W\ o § f 2 /f %
« Use estimates to create Gram matrix * Classification: train SDM with 20 hand-labeled negatives R T fﬁ\iiiiii asssunuul WNNSEEsed Bl N o
» Project estimated Gram matrix to SPD cone and 11 positives sample negatives
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» must estimate K(p,q) for distributions p and g Rd D M k=3 AnOmaIy SCOre Vortex Class PrObablllty

* many useful kernels have a form that can be

derived from: ; ji ;fffffff
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Euclidean: (P, Q) = I( D— q) Estimator is provably consistent with minor assumptions [1] References
1/2 1/2 . . . e . . . :
Hellinger: ,Ll( P, CI) 1-— I P problem: resulting Gram matrix may not be positive semidefinite [1] B. Poczos, J. Schneider, “"On the Estimation of alpha-Divergences”, Al and
Statistics, 2011.
renyi: (P, Q) = |0gj P“g*] solution: project back to the cone of positive semidefinite matrices [2] N. Higham, “Computing the Nearest Correlation Matrix: A Problem from Finance”,
o — using the alternating projections method of [2] IMA Journal of Numerical Analysis, 2002.
[3] JHU Turbulence Database Cluster, http://turbulence.pha.jhu.edu/
[4] B. Scholkopf, A. Smola, “Learning with Kernels: Support Vector Machines,
: : : . Use estimated Gram mairix Reqularization, Optimization, and Beyond, MIT Press, 2002.
SUppOrt DIStrIbUtlon - Plug into standard dual form of the “soft SVM” [4] [5] A. Oliva, A. Torralba, “Modeling the shape of the scene: a holistic representation of

MaChine (SDM) + Result is a quadratic program that may be solved with many different tools the spatial envelope”. International Journal of Computer Vision, 2001.
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