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Network Compression
Finding a suitable compressed representation of large-scale networks has been intensively studied in both practical and theoretical
branches of data mining and network analysis [CS09, AM01, CKL+09, BV04, SBBA08]. In particular, the success of applying some
of the recently proposed compression schemes [CKL+09, BV04, AD09] strongly depends on the “compression-friendly” arrangement of
network nodes. Usually, the goal of these arrangements is to order the nodes such that the endpoints of network links (edges) are located
as close as possible. Doing so leads to a more compact representation of links and allows a better performance of compression schemes
and network element access operations.
In [CKL+09], Chierichetti et al. propose to use ordering by the minimum logarithmic arrangement problem (MLogA), that minimizes the
gap encodings of edges stretched between their endpoints. This is achieved by ordering the network nodes and assigning to them unique
integer values (ids) such that the endpoints of a link will obtain close values. MLogA seeks a nearly optimal information-theoretical com-
pressed encoding size for all network links as it minimizes the total number of bits to spend for this purpose. The problem is NP-hard. For
example, instead of the popular network/matrix compressed row representation, which contains a sorted lists of neighbors per node, the
following link gap encoding can be used.

Compressed row format Gap format
node number sorted neighbors sorted gaps
1 i,j,k,... i,j-i,k-j,...
2 p,q,r,... p,q-p,r-q,...

Problem (GMLogA): Given a weighted graph G = (V,E), the goal of the link-weighted generalized minimum loga-
rithmic arrangement problem is to minimize

∑
ij∈E wij lg |π(i) − π(j)| over all permutations π. Given node volumes,

v, this is equivalent to the continuous version

min
π

∑
ij∈E

wij lg |xi − xj| such that xi =
vi
2
+

∑
k,π(k)<π(i)

vk .

Multilevel Algorithm

Exact solution

Coarsening
Interpolation

Refinement

Coarsening. Algebraic Multigrid-based projections Lc =↑cf Lf(↑cf)T with in-
terpolation operator ↑cf based on the algebraic distances between vertices.

Algebraic Distance. Extended p-normed algebraic distance between
nodes i and j after k iterations x(k+1) = HJORx

(k) on R random initialial x(0,r)

ρ
(k)
ij :=

(
R∑
r=1

|x(k,r)i − x(k,r)j |p
)1/p

,

where HJOR = (D/ω)−1 ((1/ω − 1)D + L + U).

Uncoarsening. Given a (partial) solution, improving a contribution of one node requires minimization of∑
j∈Ni

wij lg |xi − x̃j|. Since for every j ∈ Ni, xi = x̃j implies the best solution, resolve this ambiguity by setting

xi = x̃t ⇐⇒ t = arg min
k∈Ni

∑
k 6=j∈Ni

wkj lg |x̃k − x̃j|.

To preserve linear complexity, solved using linear time approximation that seeks nearly minimum sum at the point
of maximal density using Gaussian kernel.

Computational Results and Applications
The main unit for empirical comparison is number of bits per link. Benchmark: 100 networks from UFL matrix
collection, SNAP, and IBM VLSI benchmark.
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Highlights

•Algebraic distance is very important, otherwise the interpolation order for AMG has to be at least 2.
•Most beneficial networks are not from one collection: VLSI graphs, roads, social networks, web links.
•Spectral ordering produced poor results on most of the networks.
•Strong solver for minimum linear arrangement ordering with GMLogA postprocessing can produce good results.
•GMLogA reordering of network can improve general performance of algorithms with intensive node/link access

operations via improving operations with cache. Currently work in solver for optimal response to epidemics and
cyber attacks. Also see Peter Lindstrom’s poster.
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