

Stable and Efficient Modeling of Anelastic Attenuation in Seismic Wave Propagation


We develop a stable finite difference approximation of the three-dimensional viscoelastic wave equation, based on a generalized Maxwell material model. This visco-elastic material is commonly is used in seismology to approximate a constant-Q 
absorption band solid. The proposed scheme discretizes the governing equations in second order displacement formulation using 3 memory variables per visco-elastic mechanism, making it significantly more memory efficient than the commonly used 
first order velocity-stress formulation. The new scheme is a generalization of our energy conserving finite difference scheme for the elastic wave equation in second order formulation. Our main result is a proof that the proposed scheme is energy stable, 
also for heterogeneous material models. The proof relies on the summation by parts (SBP) property of the discretization. Numerical experiments verify verify the accuracy and stability of the new scheme. Semi-analytical solutions for the LOH.3 layer over 
half-space problem is used to demonstrate how the number of visco-elastic mechanisms and the grid resolution influence the accuracy. We find that three mechanisms usually are sufficient to make the modeling error smaller than the discretization error. 
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We get an energy stable scheme by using summation by parts operators in space 
and a hybrid Leap-Frog / Crank-Nicholson scheme for the memory variables 
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n Norm of error @ 10km CPU-time (512 cores) 
2 1.31e-1 25 min, 30 sec. 
3 4.84e-2 31 min., 14 sec. 
4 5.09e-2 36 min, 7 sec. 

A generalized Maxwell material is used to approximate a visco-elastic constant-Q absorption band solid in the time-domain 
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In a visco-elastic material, 
the stress due to a step 
function loading relaxes 
over time 

Coupling ‘n’ standard linear 
solids in parallel gives a 
generalized Maxwell 
material  

Corresponding to the two 
Lame’ parameters in an 
isotropic elastic material, a 
generalized Maxwell 
material is described by 
two stress relaxation 
functions 

In frequency space, the 
visco-elastic shear 
modulus is defined in terms 
of the Fourier transform of 
the stress relaxation 
function 

In seismology, the quality 
factor ‘Q” (and the loss 
angle δ) is observed to be 
constant over two decades 
in frequency.  

Shear waves and compressional waves attenuate at 
different rates. A similar procedure is used to determine 
λν based on the quality factor QP for compressional 
waves. 

c2s(ω) =
µ0|ms(ω)|
ρ cos2(δ/2)

The visco-elastic material is dispersive, i.e., the phase 
velocity depends on frequency. The un-relaxed shear 
modulus µ0 can be determined after specifying the 
phase velocity for shear waves, cs, at a reference 
frequency ωr.  

Emmerich and Korn’s [1] procedure for determining βν: 
1.  Relaxation frequencies ων, ν=1,2,…,n, logarithmically distributed over  [ωmin, 

ωmax] 
2.  Set Q(ω)=Q0=const. at 2n-1 collocation frequencies, also logarithmically 

distributed over [ωmin, ωmax] 
3.  Solve over-determined linear system for βν using least squares 
 
[1] H. Emmerich and M. Korn. Geophysics, 52(9):1252–1264, 1987. 

We plot the actual quality factor as function of scaled 
frequency, ω/ωmin when ωmax=100 ωmin. Note that n=2 is 
inadequate, but n=3 gives a much better approximation. 
Only minor improvements are achieved by increasing 
‘n’ further. 
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Using the second order formulation, we derive sufficient conditions on the 
material properties through an energy estimate 

300 µm x 60 µm 
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300 µm x 60 
µm channel 
cross-section 

contraction 
flow 
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We use memory variables 
based on the history of the 
displacement (instead of the 
strain) to express the stress 
tensor as function of the 
strain tensor. 
 
The visco-elastic wave 
equation governs the 
evolution of the 
displacement. 
  
Integration by parts shows 
that the spatial operator is 
self-adjoint wrt the L2 scalar 
product. 
 
The boundary terms cancel 
for Dirichlet or free-surface 
b.c. 
 
We define the visco-elastic 
energy according to: 
 
Since Sν is linear in λν and µν, 
we have 
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We discretize the spatial operator using 
a 2nd order accurate finite difference 
scheme that satisfies a summation by 
parts identity in a weighted scalar 
product.  
 
The boundary terms cancel for Dirichlet 
or free-surface b.c. An energy estimate 
can be derived for the semi-discrete 
approximation, using the same 
technique as the continuous problem. 
 
We discretize the differential equation 
for the memory variables using a hybrid 
scheme. 
 
Let um+1/2=(um+1 + um)/2 and  
Dtum=(um+1 - um)/Δt. Define the discrete 
energy by 
 
 
Theorem 2: 
Assume that the material data satisfy the 
conditions from Theorem 1, and that the 
time-step satisfies: 
 
Then, the solution of the discrete visco-
elastic wave equation with F=0, subject 
to Dirichlet or free-surface b.c. has non-
increasing discrete energy. 
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Then, the solution of the visco-elastic 
wave equation with F=0, subject to 
Dirichlet or free-surface b.c., has non-
increasing energy. 

Remark: It is also possible to formulate the visco-elastic wave equation in terms of memory variables for the strain tensor. While 
this formulation is equivalent for the continuous equations, it requires 6 dependent variables per mechanism instead of 3. 
Furthermore, it is not known if those equations can be discretized such that sufficient conditions for stability can be established. 

Numerical experiments show that n=3 mechanisms often make the modeling 
error smaller than the discretization error 

semi-analytical 
numerical 

The LOH.3 test problem [2]: 
Top layer: Cp=4 km/s, Cs=2 km/s, ρ=2.6 Mg/m^3, QP=120, QS=40 
Half-space: Cp=6 km/s, Cs=3.464 km/s, ρ=2.7 Mg/m^3, QP=155.9, QS=69.3 
Phase velocities at 2.5 Hz, , ωmin=0.15 Hz, ωmax=15 Hz  
Source at 2 km depth, Mxy=1018 Nm, Gaussian time function, f0=3.18 Hz 

10 km 

1 km 

h=25 m 
h=50 m 

3.49 x 108 grid points, 2560 time steps 

[2] S. M. Day, et al. Test of 3D elastodynamic codes: Lifelines program task 1A02. Pacific Earthquake Engineering Center, 2003.  

Motion at receiver 10 km from epicenter 

Grid resolution: 
Highest frequency, fup= 7.95 Hz 
Smallest wave length, λmin=251 m 
Points per wave length, P=10.04 

  Second order formulation: 
•  Less memory than a 1st order velocity/

stress formulation 
•  No worries about Saint-Venant 

compatibility conditions 
  Conservative finite difference 

discretization 
•  Summation by parts (SBP) principle 
•  Stable long-time simulations in 

heterogeneous media with free surfaces 
•  Not the standard staggered grid FD 

  Easy grid generation with a composite 
grid approach  
•  Curvilinear boundary conforming mesh 

near topography surface 
•  Coarser and coarser Cartesian meshes 

away from surface 
•  Energy conserving with hanging nodes 

  Kinematic source model 
•  Moment tensor & point force source 

terms with many time functions 

  MPI for parallel runs 
•  Tested on up to 32,768 cores 

  Extensively verified 
•  Method of manufactured solutions 
•  Lamb’s problem 
•  Layer over half-space problems 
•  Comparisons with other codes 

  Project website and software download  
•  computation.llnl.gov/casc/serpentine 

More information in our paper: 
[3] N.A. Petersson and B. Sjogreen, Stable and Efficient Modeling of Anelastic Attenuation 
in Seismic Wave Propagation, Comm. Comput. Phys. (to appear), (2011).  

The visco-elastic modeling has been generalized to curvilinear grids and mesh 
refinement with hanging nodes, and is part of WPP version 2.1 


