
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

Enabling Tools for Extreme Scale
Computation of Nanoscale Fluids

David Day, Amalie Frischknecht,
Michael Heroux, Michael Parks
Sandia National Laboratories

Laura Frink
Colder Insights Corp.

Kirk Soodhalter
Temple University

Deaglan Halligan
Purdue University

SAND2011-7515P

 Test several new algorithmic capabilities in Sandia’s Tramonto Fluid DFT code
 Ability to solve fluid-DFT governing equations in 3D and at large scales crucial to

continued scientific progress.

 To realize promised performance of modern high-end multicore systems, we must
 develop new algorithmic capabilities to efficiently utilize multicore nodes

 Increase performance by reducing node-level memory bandwidth and size usage

 Mixed-precision and precision-neutral algorithms
 Leverage Trilinos/Tpetra (templated C++) solver stack
 Performance and storage advantage of float over double
 Utilize high-precision arithmetic if double inadequate

 Least-squares methods (LSQR)

 Achieve robustness by dynamically adapting precision
 Shield user from details of mixed-precision computation

 Block Krylov recycling methods

 Recycling subspace information from previous solves to reduce iteration count
 Block methods have superior convergence properties and computation to

bandwidth requirements, improving processor utilization

Overview

 Structure arises from surfaces, fields, self-assembly
 Density, diffusion, and viscosity different from bulk fluid properties
 Rich phase behavior: wetting, capillary condensation, layering

Nanostructured Fluids

Biological Membranes
 Self-assembled fluid bilayer packed

with proteins, peptides, etc.

Engineered Systems
Lipid vesicle/nanoparticle

assemblies for drug delivery)

* G.D. Bothun, Hydrophobic silver nanoparticles trapped in lipid bilayers: Size distribution, bilayer phase behavior, and optical properties, J.
Nanobiotechnology, 6, (2008).

 Enable modeling and simulation of a wide range of applications, including fluids at
 interfaces, colloidal fluids, wetting, porous media, and biological mechanisms at the
 cellular level
 Given external field V(r), determine structure of inhomogeneous fluid as captured by

density distribution ρ(r) via minimization of free energy functional Ω(ρ(r))

 Solve with Newton-Krylov.

 Use Sandia’s Tramonto package for complex fluid systems

 Built upon Trilinos software components: trilinos.sandia.gov
 Open source: software.sandia.gov/tramonto/

Density Functional Theory for Fluids

µ

 δΩ
= δρ T,

0
(r)

id hs vdW c assocΩ[ρ(r)]=F + F + F + F + F + ρ(r)[V(r)-μ]∫
Ideal
gas

Hard
sphere

Dispersion
attractions

Associations
(H-bonding)

Coulomb
interactions

Legendre transform from Canonical
to Grand Canonical ensemble

[Applied field]

 Discrete formulation
 Uniform structured grid
 Discretize using collocation at mesh points
 Linear interpolation between mesh points

 Newton: Convergence in O(10) iterations
 Linear system properties (different than discrete PDEs)

 Strong interphysics coupling
 Large number of DOF/node
 Nonlocal integral equations
 (matrix sparsity dependent upon mesh)

Numerical Methods for Fluid-DFTs

Coarse Mesh
(Few nonzero per row)

Fine Mesh
(Many nonzero per row)

 Resulting linear systems take the form

 Careful ordering of unknowns makes it advantageous to solve Schur complement

 where

 Schur system may have up to 80% fewer dofs
 Big win for hard sphere systems: A11 is diagonal!
 Similar favorable structure to A11 for polymer problems using
 Chandler-McCoy-Singer (CMS) DFT
 More complex structure for WJDC (Werthim, Jain, Dominik, and Chapman) DFT

Segregated Schur Complement Solvers*

     
=     

     
11 12 1 1

21 22 2 2

A A x b
A A x b

Each Aij has own
physics-based
block structure

=2Sx f

−= − 1
22 21 11 12S A A A A −= − 1

2 21 11 1f b A A b

* M.A. Heroux, A.G. Salinger, and L.J.D. Frink, Parallel segregated Schur complement methods for fluid density functional theories, SIAM J. Sci.
Comput., 29, (2007). pp. 1526-1535.

 Rewrite Tramonto solver managers to template scalar, local ordinal, and global
 ordinal types (templated C++)

 Arbitrary scalar types: float, complex, dd_real, qd_real (high precision)
 Utilize high-precision arithmetic if double precision inadequate
 Avoid 4GB limit of int – allow arbitrarily large problems (exascale necessity)
 Enhance performance while maintaining solution accuracy

 Template scalar type through solver stack

Enabling Mixed-Precision and
Precision Neutral Computation

Fluid-DFT
Applications

Fluid DFT Code
(C++, Templated)

Algorithms and
Enabling Technologies

Linear Solvers
(C++, Templated) Tpetra parallel

linear algebra library
C++, Templated)

Tools Library
BLAS/LAPACK wrappers

(C++, Templated)

Scalar
Type

Scalar
Type

Scalar
Type

Scalar
Type

http://i.cooltext.com/d.php?renderid=575283895&extension=png�

 Reduce node-level memory bandwidth and size usage
 Replace double with float

 Example polymer problem from Tramonto (8 linear solves inside Newton loop)

Precision Neutral Computation

NCore Float Double Speedup
1 3.753 10.970 2.923

2 1.766 4.195 2.375

3 1.203 2.086 1.734

4 1.380 2.643 1.915

5 1.211 2.460 2.031

6 1.056 2.313 2.190

7 1.036 2.057 1.986

8 1.524 2.387 1.566

 LSQR*
 Implemented in Trilinos/Belos package (C++, templated)

 Krylov method for Ax=b based upon Golub-Kahan bidiagonalization process
 Algebraically equivalent to MINRES applied to normal equations AHAx=b, but with
 better numerical properties (especially if A ill-conditioned)

 Governing equations

 Short-term recurrence; Fixed memory-footprint
 Sharp estimates of A, A-1 -> estimate of cond(A)

 Robustness under reduced precision

 Return least-squares solution to Ax=b even is A numerically singular due to use
 of lower precision

LSQR

H H
k k kA U = V B

kk k+1AV =U B

H
kspan(U)= (AA ,b)

H H
kspan(V)= (A A, A b)

β kk k 1y y
b - Ax =min b - AV y =min e -B y

* C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear equations and sparse least squares, TOMS 8(1), 43-71 (1982).

 Balance speed and solution accuracy by dynamically adapting solver precision
(1) Solve Ax=b in float
(2) If condest(A) < machEpsSingle return
(3) Else solve Ax=b in double
(4) If condest(A) < machEpsDouble return
(5) Else solve Ax=b in double-double
(6) If condest(A) < machEpsDouble-Double return
(7) …

 Shield end user from details of adaptive precision!
 Adaptive precision example with LSQR

 Case #1: Well-conditioned matrix (nonsingular in float)
 Requested relative residual tolerance = 5e-4

 Case #2: Ill-conditioned matrix (singular in float, nonsingular in double)
 Requested relative residual tolerance = 1e-6

LSQR

Scalar Type Solve Time (s) # Iters CondTest Residual Norm Outcome
float 1.049 826 Nonsingular 4.98e-4 Success

Scalar Type Solve Time (s) # Iters CondTest Residual Norm Outcome
float 8.155 528 Singular 9.80e-6 Failure

double 107.568 4658 Nonsingular 9.99e-7 Success

Solver identifies
numerical singularity,

returns solution,
jumps to higher

precision!

 Leverage two important algorithmic techniques: Krylov recycling + block methods

 Krylov subspace recycling
 In Krylov subspace methods, building search space is dominant cost
 For sequences of systems, get fast convergence rate and good initial guess

immediately by recycling selected search spaces from previous systems
 Family of recycling methods: Recycling GMRES (GCRODR), recycling CG (RCG),

recycling MINRES (RMINRES), recycling BiCG (RBiCG).

 Block methods
 Performance advantages over single-vector methods
 (BLAS 1 → BLAS3, SpMV → SpMM)
 Reduce per-core bandwidth usage
 Introduce fictitious right-hand-sides to enhance search space

Block Recycling Linear Solvers

 Block Recycling GMRES
 Implemented in Trilinos/Belos package (C++, templated)

 (1) Solve A1X1=B1
 (2) Compute k recycle vectors Uk (for example, harmonic Ritz vectors)
 (3) Solve next linear system A2X2=B2 by iterating orthogonally to image of Uk:

 (4) Repeat

 Example hard sphere problem from Tramonto
 (electrostatics + attractions)
 7 linear solves in from Newton loop
 Savings: 60 matvecs / 36% (1 RHS),
 50 matvecs / 40%, (3 RHS)

Block Recycling GMRES (BGCRODR)

BGCRODR on
Tramonto Polymer Example

[] []  
 
 

k k
2 k m k m+1

m

I B
A U W = C W

0 H
H

k k mB = C AW k 2 kC = A U H
k k kC C = I

 Tested several new algorithmic capabilities in Sandia’s Tramonto Fluid DFT code
 Improved performance via reduction of node-level memory bandwidth
 and size usage

 Enabling mixed-precision and precision-neutral algorithms

 Leverage Trilinos (templated C++) solver stack
 2x or more speedup with float instead of double
 High-precision arithmetic if double inadequate

 Least-squares methods (LSQR)

 Achieve robustness by dynamically adapting precision
 Shield user from details of adaptive precision computation

 Block Krylov recycling methods

 Recycling subspace information from previous solves to reduce iteration count
 Block methods have superior convergence properties and computation to bandwidth

requirements, improving processor utilization

Summary

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13

