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 Test several new algorithmic capabilities in Sandia’s Tramonto Fluid DFT code 
 Ability to solve fluid-DFT governing equations in 3D and at large scales crucial to 

continued scientific progress. 
 

 To realize promised performance of modern high-end multicore systems, we must   
  develop new algorithmic capabilities to efficiently utilize multicore nodes  

 Increase performance by reducing node-level memory bandwidth and size usage 
 

 Mixed-precision and precision-neutral algorithms 
 Leverage Trilinos/Tpetra (templated C++) solver stack 
 Performance and storage advantage of float over double 
 Utilize high-precision arithmetic if double inadequate 

 
 Least-squares methods (LSQR) 

 Achieve robustness by dynamically adapting precision 
 Shield user from details of mixed-precision computation 

 
 Block Krylov recycling methods 

 Recycling subspace information from previous solves to reduce iteration count 
 Block methods have superior convergence properties and computation to 

bandwidth requirements, improving processor utilization 
 

Overview 



 Structure arises from surfaces, fields, self-assembly 
 Density, diffusion, and viscosity different from bulk fluid properties 
 Rich phase behavior: wetting, capillary condensation, layering 
 

 

Nanostructured Fluids 

Biological Membranes 
 Self-assembled fluid bilayer packed 

with proteins, peptides, etc. 

Engineered Systems 
Lipid vesicle/nanoparticle  

assemblies for drug delivery) 
 

* G.D. Bothun, Hydrophobic silver nanoparticles trapped in lipid bilayers: Size distribution, bilayer phase behavior, and optical properties, J. 
Nanobiotechnology, 6, (2008).  



 Enable modeling and simulation of a wide range of applications, including fluids at  
  interfaces, colloidal fluids, wetting, porous media, and biological mechanisms at the  
   cellular level 
 Given external field V(r), determine structure of inhomogeneous fluid as captured by 

density distribution ρ(r) via minimization of free energy functional Ω(ρ(r)) 
 
 
 
 
 
 

 
 Solve                      with Newton-Krylov. 
 

 
 Use Sandia’s Tramonto package for complex fluid systems 

 Built upon Trilinos software components: trilinos.sandia.gov 
 Open source: software.sandia.gov/tramonto/  

 
 
 

Density Functional Theory for Fluids 
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 Discrete formulation 
 Uniform structured grid 
 Discretize using collocation at mesh points 
 Linear interpolation between mesh points 

 Newton: Convergence in O(10) iterations 
 Linear system properties (different than discrete PDEs) 

 Strong interphysics coupling 
 Large number of DOF/node 
 Nonlocal integral equations  
  (matrix sparsity dependent upon mesh) 
 

Numerical Methods for Fluid-DFTs 

Coarse Mesh  
(Few nonzero per row) 

Fine Mesh  
(Many nonzero per row) 



 Resulting linear systems take the form  
 
 
 
 

 
 
 

 Careful ordering of unknowns makes it advantageous to solve Schur complement 
  

 
   where  
 
 
  
 Schur system may have up to 80% fewer dofs 
 Big win for hard sphere systems: A11 is diagonal! 
 Similar favorable structure to A11 for polymer problems using 
  Chandler-McCoy-Singer (CMS) DFT 
 More complex structure for WJDC (Werthim, Jain, Dominik, and Chapman) DFT 
 
 
 
 

Segregated Schur Complement Solvers* 
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* M.A. Heroux, A.G. Salinger, and L.J.D. Frink, Parallel segregated Schur complement methods for fluid density functional theories, SIAM J. Sci. 
Comput., 29, (2007). pp. 1526-1535. 



 Rewrite Tramonto solver managers to template scalar, local ordinal, and global  
  ordinal types (templated C++) 

 Arbitrary scalar types: float, complex, dd_real, qd_real (high precision)  
 Utilize high-precision arithmetic if double precision inadequate 
 Avoid 4GB limit of int – allow arbitrarily large problems (exascale necessity) 
 Enhance performance while maintaining solution accuracy 

 Template scalar type through solver stack 
 
 
 
 
 
 
 
 
 

 
 
 

Enabling Mixed-Precision and  
Precision Neutral Computation 

Fluid-DFT 
Applications 

Fluid DFT Code 
(C++, Templated) 

Algorithms and 
Enabling Technologies  

Linear Solvers 
(C++, Templated) Tpetra parallel 

linear algebra library 
C++, Templated) 

 

Tools Library 
BLAS/LAPACK wrappers 

(C++, Templated) 
 

Scalar 
Type 

Scalar 
Type 

Scalar 
Type 

Scalar 
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 Reduce node-level memory bandwidth and size usage 
 Replace double with float 

 
 Example polymer problem from Tramonto (8 linear solves inside Newton loop) 

 
 
 
 
 
 
 
 
 

 
 
 

Precision Neutral Computation 

NCore Float Double Speedup 
1 3.753 10.970 2.923 

2 1.766  4.195 2.375 

3 1.203 2.086 1.734 

4 1.380  2.643 1.915 

5 1.211  2.460 2.031 

6 1.056  2.313 2.190 

7 1.036 2.057 1.986 

8 1.524 2.387 1.566 



 LSQR* 
 Implemented in Trilinos/Belos package (C++, templated) 

 Krylov method for Ax=b based upon Golub-Kahan bidiagonalization process 
 Algebraically equivalent to MINRES applied to normal equations AHAx=b, but with  
  better numerical properties (especially if A ill-conditioned) 

 
 Governing equations 

 
 
 
 
 
 
 

 Short-term recurrence; Fixed memory-footprint 
 Sharp estimates of A, A-1 -> estimate of cond(A) 

 
 Robustness under reduced precision 

 Return least-squares solution to Ax=b even is A numerically singular due to use  
  of lower precision 

 

LSQR 
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* C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear equations and sparse least squares, TOMS 8(1), 43-71 (1982).  



 Balance speed and solution accuracy by dynamically adapting solver precision 
(1) Solve Ax=b in float 
(2) If condest(A) < machEpsSingle return 
(3) Else solve Ax=b in double 
(4) If condest(A) < machEpsDouble return 
(5) Else solve Ax=b in double-double 
(6) If condest(A) < machEpsDouble-Double return 
(7) … 

 Shield end user from details of adaptive precision! 
 Adaptive precision example with LSQR 

 Case #1: Well-conditioned matrix (nonsingular in float) 
 Requested relative residual tolerance = 5e-4 

 
 
 

 Case #2: Ill-conditioned matrix (singular in float, nonsingular in double) 
 Requested relative residual tolerance = 1e-6 

 
 

 

LSQR 

Scalar Type Solve Time (s) # Iters CondTest Residual Norm Outcome 
float 1.049 826 Nonsingular 4.98e-4 Success 

Scalar Type Solve Time (s) # Iters CondTest Residual Norm Outcome 
float      8.155    528 Singular 9.80e-6 Failure 

double 107.568 4658 Nonsingular 9.99e-7 Success 

Solver identifies 
numerical singularity, 

returns solution,  
jumps to higher 

precision! 



 Leverage two important algorithmic techniques: Krylov recycling + block methods 
 

 Krylov subspace recycling 
 In Krylov subspace methods, building search space is dominant cost 
 For sequences of systems, get fast convergence rate and good initial guess 

immediately by recycling selected search spaces from previous systems 
 Family of recycling methods: Recycling GMRES (GCRODR), recycling CG (RCG), 

recycling MINRES (RMINRES), recycling BiCG (RBiCG). 
 

 Block methods 
 Performance advantages over single-vector methods  
  (BLAS 1 → BLAS3, SpMV → SpMM) 
 Reduce per-core bandwidth usage 
 Introduce fictitious right-hand-sides to enhance search space 

 
 
 
 
 
 

 
 
 

Block Recycling Linear Solvers 



 Block Recycling GMRES 
 Implemented in Trilinos/Belos package (C++, templated) 

  (1) Solve A1X1=B1 
   (2) Compute k recycle vectors Uk (for example, harmonic Ritz vectors)  
  (3) Solve next linear system A2X2=B2 by iterating orthogonally to image of Uk: 

 
 

 
 
 

  (4) Repeat 
 
 

 Example hard sphere problem from Tramonto 
   (electrostatics + attractions) 
 7 linear solves in from Newton loop 
 Savings: 60 matvecs / 36% (1 RHS),  
       50 matvecs / 40%, (3 RHS) 

 
 

Block Recycling GMRES (BGCRODR) 

BGCRODR on 
Tramonto Polymer Example 
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 Tested several new algorithmic capabilities in Sandia’s Tramonto Fluid DFT code 
 Improved performance via reduction of node-level memory bandwidth  
  and size usage 

 
 Enabling mixed-precision and precision-neutral algorithms 

 Leverage Trilinos (templated C++) solver stack 
 2x or more speedup with float instead of double 
 High-precision arithmetic if double inadequate 

 
 Least-squares methods (LSQR) 

 Achieve robustness by dynamically adapting precision 
 Shield user from details of adaptive precision computation 

 
 Block Krylov recycling methods 

 Recycling subspace information from previous solves to reduce iteration count 
 Block methods have superior convergence properties and computation to bandwidth 

requirements, improving processor utilization 

Summary 
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