Identifying Active Variables to Improve the Performance

of Operator Overloading Automatic Differentiation
Drew Wicke, Sri Hari Krishna Narayanan, and Paul Hovland

Introduction Sample Output

Automatic differentiation (AD) is a

Argonne

NATIONAL LABORATORY

Use of Sacado Derivative Type

technique of computing the derivative of ‘Vary variables are those whose value is computed using an typedef Sacado::Fad: :DFad<double> DERIV_TYPE_double;
given source code. AD can be independent variable. void foo(DERIV_TYPE_double *x, DERIV_TYPE_double *f)
implemented by the operator overloading | [~ *Useful variables are used to compute the value of the dependent { | | |
or source-to-source transformation variable # pragma $indep,x // specify the independent
approach. *Active variables are both vary and useful. # pragma $dep,f // and dependent variables
double squarePoly = ADValue((*x) * (*x));
g@ig | T-0.75 years - typedef Sacado: :Fad: :DFad<double> DERIV_TYPE_double; double theConst = 3.14 * 2;
) | //x-independent, f-dependent DERIV_TYPE_double div = ((*x) / 2);
: volid foo(DERIV_TYPE_double *x, DERIV_TYPE_double *f){
1o =) DERIV_TYPE_double squarePoly = (*x) * (*x); (*f) = div * theConst:
. ——) DERIV_TYPE_double theConst = 3.14 * 2; 1
| { =) DERIV_TYPE_double div = ((*x) / 2);
. (*f) = div * theConst;
0| s Figure 5: This code is efficient because only the active variable is
of the Sacado derivative type, DERIV_TYPE_double.
.OM Figure 3: The code illustrates how a function can be written to be differentiated
A S A A : : by Sacado. All the variables are of the Sacado derivative type
Figure 1: A snapshot of the sensitivity map of the DERIV_TYPE_double. Both the function and the derivatives are computed using Challen es
heat transport in the north atlantic to temperature overloaded operators when the variables have the Sacado derivative type. Since 9
in a depth of 1590 meters over a period of 10 years only active variables need be of derivative type, the code is inefficient due to _ _
going backwards in time. unnecessary memory allocation and overloaded function calls. We encountered challenges In type cha nging. For
Source: http://www.mcs.anl.gov/OpenAD/ example, to change the type of typedef-ed active
. . . . variables we must extract base type to set to the
Operator Overloading AD Activity Analysis Tool Flow derivative type.
// before: // after:
Uses features of the programming _ typedef double* fir; typedef double* fir;
language to alter the semantics of 1. Input Code 2. ROSE AST 3. OpenAnalysis ICFG typedef fir* sec; typedef fir* sec;
mathematical operators in order to int mainCO){ sec test; // active DERIV_TYPE_double **test;
compute the derivative. double val: = L\
val = 4.3; s Convert - . | |
Operator overloading allows for - —y T Figure 6: Code shows how double and pointer data types are
maintainable code: however, speed of . 0 g e } — gathered to change the type of test to DERIV_TYPE_double**,
computation is sacrificed. The goal of this 1 - ® ® == | = *
work is to use activity analysis to improve ®® — l/]
the performance of the calculation of 4. Vary Analysis ==~ Conclusion/Future Steps
derivatives using Sacado. 6. OUtpUt code Usefu| Ana|ysis- Our tool:
Activity Analysis

®can be used with any operator overloading AD

&other) { 5. Type-change package
of active variables to

this->val = this->val() * other.val(); int mainO{ - ®replaces the manual process, which is slow and likely
. ke % derivative type . . .
this->dx = this->val() * other.dx() + DERIV_TYPE_double val; to overestimate the number active variables
other->val() * this->dx(); val = 4.3 . - . .
= 79 ® successfully identifies active variables

DERIV_TYPE operator* (const DERIV_TYPE

return *this;

¥ return 0; ® can change the data type of active variables of most
| o 1 C data types

Figure 2: Example of an overloaded multiplication

operator. Not only must the product be computed, In the future we would like to:

but also the value of the derivative after applying Figure 4: Process through which our tool changes the types of active variables.

the product rule. 1. Specify input source. ® gather performance data

2. Create a ROSE abstract syntax tree (AST).
_ _ . 3. Convert AST to a interprocedural control flow graph (ICFG) within OpenAnalysis. ®fully support C++
Sacado is a package in the Trilinos 4. Using OpenAnalysis, perform vary, useful, and activity analysis to make a list of ;
I I I I i i References:

framework and is an Implementatlon In active variables. Automatic differentiation: http://www.autodiff.org/

5. Change the active variable’s type to the Sacado derivative type within the AST.

C++ of the operator overloading method OpenAnalysis: http://openanalysis.berlios.de/
6. Generate output code. ROSE: http://www.rosecompiler.org/

of AD. Sacado: http://trilinos.sandia.gov/

http://trilinos.sandia.gov
http://trilinos.sandia.gov
http://www.mcs.anl.gov/OpenAD/
http://www.mcs.anl.gov/OpenAD/

