
Our tool:
can be used with any operator overloading AD

package
replaces the manual process, which is slow and likely

to overestimate the number active variables
successfully identifies active variables
can change the data type of active variables of most

C data types

In the future we would like to:
gather performance data
fully support C++

Identifying Active Variables to Improve the Performance
of Operator Overloading Automatic Differentiation
Drew Wicke, Sri Hari Krishna Narayanan, and Paul Hovland

Introduction Sample OutputUse of Sacado Derivative Type

Automatic differentiation (AD) is a
technique of computing the derivative of
g i v e n s o u r c e c o d e . A D c a n b e
implemented by the operator overloading
or source-to-source transformation
approach.

Conclusion/Future Steps

•Vary variables are those whose value is computed using an
independent variable.
•Useful variables are used to compute the value of the dependent
variable
•Active variables are both vary and useful.

int main(){
	 double val;
	 val = 4.3;
	 …
	 return 0;
}

Create Convert

2. ROSE AST 3. OpenAnalysis ICFG

4. Vary Analysis
 Useful Analysis
 Activity Analysis

int main(){
	 DERIV_TYPE_double val;
	 val = 4.3;
	 …
	 return 0;
}

6. Output code

1. Input Code

5. Type-change
of active variables to
derivative type

typedef Sacado::Fad::DFad<double> DERIV_TYPE_double;
//x-independent, f-dependent
void foo(DERIV_TYPE_double *x, DERIV_TYPE_double *f){
	 DERIV_TYPE_double squarePoly = (*x) * (*x);
	 DERIV_TYPE_double theConst = 3.14 * 2;
	 DERIV_TYPE_double div = ((*x) / 2);
	
 (*f) = div * theConst;
}	 	 	 	 	 	 	 	

Figure 3: The code illustrates how a function can be written to be differentiated
by Sacado. All the variables are of the Sacado derivative type
DERIV_TYPE_double. Both the function and the derivatives are computed using
overloaded operators when the variables have the Sacado derivative type. Since
only active variables need be of derivative type, the code is inefficient due to
unnecessary memory allocation and overloaded function calls.

DERIV_TYPE operator* (const DERIV_TYPE
 &other) {
 this->val = this->val() * other.val();
 this->dx = this->val() * other.dx() +
	 	 other->val() * this->dx();
 return *this;
}

Figure 2: Example of an overloaded multiplication
operator. Not only must the product be computed,
but also the value of the derivative after applying
the product rule.

typedef Sacado::Fad::DFad<double> DERIV_TYPE_double;
void foo(DERIV_TYPE_double *x, DERIV_TYPE_double *f)
{
pragma $indep,x // specify the independent
pragma $dep,f // and dependent variables
	 double squarePoly = ADValue((*x) * (*x));
	 double theConst = 3.14 * 2;
	 DERIV_TYPE_double div = ((*x) / 2);
	 	
 (*f) = div * theConst;
}

Challenges

We encountered challenges in type changing. For
example, to change the type of typedef-ed active
variables we must extract base type to set to the
derivative type.

// after:
typedef double* fir;
typedef fir* sec;
DERIV_TYPE_double **test;

// before:
typedef double* fir;
typedef fir* sec;
sec test; // active

Figure 6: Code shows how double and pointer data types are
gathered to change the type of test to DERIV_TYPE_double**.

Figure 4: Process through which our tool changes the types of active variables.
1. Specify input source.
2. Create a ROSE abstract syntax tree (AST).
3. Convert AST to a interprocedural control flow graph (ICFG) within OpenAnalysis.
4. Using OpenAnalysis, perform vary, useful, and activity analysis to make a list of
active variables.
5. Change the active variable’s type to the Sacado derivative type within the AST.
6. Generate output code.

References:
Automatic differentiation: http://www.autodiff.org/
OpenAnalysis: http://openanalysis.berlios.de/
ROSE: http://www.rosecompiler.org/
Sacado: http://trilinos.sandia.gov/

Operator Overloading AD

Uses features of the programming
language to alter the semantics of
mathematical operators in order to
compute the derivative.

Ope ra to r ove r l oad i ng a l l ows f o r
maintainable code; however, speed of
computation is sacrificed. The goal of this
work is to use activity analysis to improve
the performance of the calculation of
derivatives using Sacado.

Activity Analysis Tool Flow

Sacado is a package in the Trilinos
framework and is an implementation in
C++ of the operator overloading method
of AD.

Figure 5: This code is efficient because only the active variable is
of the Sacado derivative type, DERIV_TYPE_double.

Figure 1: A snapshot of the sensitivity map of the
heat transport in the north atlantic to temperature
in a depth of 1590 meters over a period of 10 years
going backwards in time.
Source: http://www.mcs.anl.gov/OpenAD/

http://trilinos.sandia.gov
http://trilinos.sandia.gov
http://www.mcs.anl.gov/OpenAD/
http://www.mcs.anl.gov/OpenAD/

