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Challenges
• Complex system of interacting systems
• Uncertainty due to intermittent energy resources
• Uncertainty due to price-dependent electricity demand
• Multiple temporal and spatial scales

II. Random eigenvalue analysis
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Introduction
• An efficient solution algorithm which extends 

Subspace Iteration method to random eigenvalue 
problems.

• Polynomial Chaos representation of random 
eigenpairs.

• Uncertainty quantification for dominant subspace.
• Sensitivity indices w.r.t. uncertainty sources are 

readily computable.

Illustration  II
• Elastic beam with random Young’s 

modulus
• 10 element discretization and 

Polynomial representation for the 
20x20 stiffness matrix – 2nd order 
with 3 uncertainty sources

• Calculation of the first 4 eigenpairs

Convergence in distribution       L2 Convergence

Introduction
• Uncertainties due to measurement noise, missing information and inherent variability of 

transition rates result in uncertainty in the estimation procedure.
• Maximum Entropy formulation for random transition matrix given mean values and 

standard deviations obtained from observation.

Mathematical Setting

• Admissible sets:

Maximum entropy density estimation

• Mean values calculated based on transition records:

• Independent estimation of joint pdf’s for each row:

• Lower dimensional random vector:

• MaxEnt joint pdf:

• Support:

Implementation

Illustration
• HIV progression; the 3 states are defined 

based on the cell counts.
• Mean values and 10% c.o.v. are used.

Mean values of the transition rates

Joint pdf of the 2 random transition rates: p22 , p23 - (left) only mean values used (right) mean values and variance used

(Left) stationary state distributions in time homogeneous implementation, 
(right) convergence in the time-heterogeneous implementation

Time response of state distribution p2 – (left) comparison between deterministic and realized paths,
(right) probabilistic path calculated using sufficient samples from MaxEnt RTM
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Introduction
• Sources of uncertainty: limited 

communication, non-deterministic 
interactions, unobserved links, delays.

• Available data: status of interactions over a 
time period resulting in mean values and 
standard deviations.

• Fuzzy treatment of interconnection through 
a MaxEnt random matrix formulation.

• With adjacency matrix A, Graph Laplacian L, 
and time step size dt

• Markov chain representation under 
uncertainty: 

Illustration
• Quantification of the scatter (our ignorance) about 

the consensus under uncertainties.
• Estimation of the time after which the agreement is 

achieved within an acceptable discrepancy range.
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Developed Methodologies
1. Random eigenvalue analysis for stability analysis of interconnected systems under uncertainty.
2. Markov chains with random transition matrices for demand modeling.
3. Cooperation in networked multi-agent systems in random environment for uncertainty 

quantification of agreement in distribution network.

Time response of the random value of agents 1 and 4
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Illustration  I
• 2DOF mass-spring
• Randomness in the spring 1:

• Exact eigenvalue solution:

Figures: (top) representative pdf’s 
of the phase angles of the first 
eigenvector; (bottom) representative 
pdf’s of the phase angles of the 4th 
eigenvector 

Time-homogeneous implementation                                         Time-heterogeneous implementation

(Top) Non-weighted graphs; 4 samples from links
(Bottom) weighted graph; Probabilistic representation of  links


