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Key accomplishments to date

1. Development of a new interior decomposition algorithm
I suitable for a multi-core, massively parallel environment
I where some computational nodes might fail

2. Theoretical and empirical justification of the use of sparse grid
methods in scenario generation

3. Development of a new algorithm to generate scenarios with
nonnegative weights, matching any prescribed set of moments

I nonnegative weights have theoretical advantage when used in a
convex optimization framework

I potentially useful for problems with many random variables
with structured uncertainty



The convex stochastic two-stage problem

I Convex stochastic two-stage optimization problem with K
scenarios

min cT x +
K∑

k=1

η̄k(x) s.t. x ∈ G ∩ L

η̄k(x) := min (dk)T yk s.t. yk ∈ G k ∩ Lk(x)

I Objectives:
I Self-concordance of barrier formulations?
I Find a general decomposition method



The two-stage barrier problem

I Let b and Bk , k = 1, . . . ,K be non-degenerate and strongly
self-concordant barrier functions on int G and int G k , resp.

I The two-stage barrier problem is defined as

min f (x , µ) := cT x + µb(x) +
K∑

k=1

ηk(x , µ) s.t. x ∈ L, (TSBP)

ηk(x , µ) := min dkT
yk + µBk(yk) s.t. yk ∈ Lk(x), (SSBP)

Theorem
The barrier recourse functions ηk(x , µ) are differentiable in x and
µ; convex in x and concave in µ; self-concordant in x. The family
{ηk(x , µ), µ > 0} is self-concordant.

Theorem
The composite barrier function f (x , µ) is self-concordant; and
{f (x , µ), µ > 0} is a self-concordant family.



Interior Point Decomposition Algorithms

I Derived a short-step and a long-step interior point algorithm
from the barrier formulation

I Convergence of both were proven

I short-step iteration complexity is O(
√
ϑ̃ lnµ0/ε),

I long-step iteration complexity is O(ϑ̃ lnµ0/ε),

I where ϑ̃ =
√

1
µ ∆̃xT∇2

x f (x , µ)∆̃x ;

I This general result matches the known iteration complexity of
several special cases

I two-stage linear stochastic programming
I two-stage quadratic stochastic programming
I two-stage semidefinite stochastic programming



The scenario generation problem I.

I A general stochastic program:

min
x∈X

∫
Ξ

f (x , ξ)µ(dξ),

I Two-stage problems: f (·, ξ) is the optimal value function of
the second stage; evaluating it is expensive

I Scenario generation:∫
Ξ

f (x , ξ)µ(dξ) ≈
K∑

k=1

wk f (x , ξk)

I Scenario generation ≡ cubature formulas of numerical
integration



The scenario generation problem II.

∫
Ξ

f (x , ξ)µ(dξ) ≈
K∑

k=1

wk f (x , ξk)

Desirable properties of formulas:
I Good approximation

I “Moment matching”: the formula is exact for every polynomial
f up to a certain degree

I Small K (number of scenarios)
I Fewer than usual in numerical integration

I Nonnegative weights
I Yields convex approximations of convex left-hand sides
I If f ≥ 0, evaluating the right-hand side is not prone to

cancellations

I Prescribed domain



Moment matching

I Goal: make the approximation exact for a set of polynomials
I by extension, exact for all linear combinations
I notation: ux = (p1(x), . . . , pN(x))

I Example 1: all monomials up to a certain degree,

ux = (1, x1, x2, . . . , x
d
n )

I Example 2: all monomials up to degree d , and all univariate
polynomials up to degree D.

I Moment matching formula:

K∑
k=1

wkuξk = m,

where m is the vector of integrals of the components of ux .



Moment matching and column generation

I Moment matching is a semi-infinite LP (feasibility problem).

I Given nodes ξ1, . . . , ξ` finding the weights w1, . . . ,w` is an LP

I Weighing the nodes:

min
w∈R`, α∈RN

{
N∑

i=1

|αi |
∣∣∣ ∑̀

k=1

wkuξk + αi = m, w ≥ 0

}

Lemma
If optimal value is 0, a solution is found. Otherwise the reduced
cost of “column” uξ is −p∗(ξ), where p∗ is the polynomial whose
coefficient vector (in the ux basis) is the dual optimal vector.

I Finding the column with the most negative reduced cost
amounts to a polynomial optimization problem.



Column generation oracles

Theorem
Suppose we are given an oracle that finds a node ξ`+1 with strictly
negative reduced cost, given the nodes {ξ1, . . . , ξ`} and the
optimal solution to the corresponding LP above. Using this oracle,
a positive formula can be found in oracle-polynomial time.

I Global polynomial optimization is NP-hard even for low degree

I To find a point ξ for which p∗(ξ) > 0 can be done with
random sampling:

Lemma
Let p∗ be the optimal dual solution with objective function value
I > 0. Let B be an upper bound on the maximum of the dual
feasible polynomials. Let x ≤ min(B, I ), and draw random points
from Ξ with the distribution determined by µ. Then the expected
number of points ξ needed to be drawn until one that satisfies
p∗(ξ) ≥ x is found is at most (B − x)/(I − x).



Computational results I – integrals
Approximation error for difficult integrals
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Figure: Performance profiles of five cubature formulas: Monte Carlo
(MC), quasi-Monte Carlo (QMC), reweighed QMC (RQMC), and column
generation using MC and QMC sampling (CG-MC, CG-QMC). Horizontal
axis: degree of exactness of CG-MC, CG-QMC, and RQMC methods.
Vertical axis: median relative errors from 200 experiments with a
four-variate parametric family.



Computational results II – optimization
Utility maximization model from [Pennanen-Koivu]:

min
x∈X

∫
Rn

exp(−ξTx)µ(dξ), X =
{

x ∈ Rn
+

∣∣∣ ∑
i

xi ≤ 1
}
,

d K MC QMC CG-MC CG-QMC RQMC

2 28 0.1994 0.1817 0.0683 0.0102 0.0597
3 84 0.1139 0.1130 0.0037 0.0726 0.0486
4 210 0.0661 0.0626 0.0057 0.0015 0.0187
5 462 0.0457 0.0319 0.0010 0.0019 0.0136
6 924 0.0299 0.0189 0.0070 0.0028 0.0001
7 1716 0.0245 0.0078 0.0044 0.0037 0.0030

Table: Relative errors of the approximate solutions to a utility
maximization model, as a function of the degree of exactness d and the
number of scenarios K =

(
d+6

6

)
. Acronyms are on previous slide.



Publications

Papers acknowledging the grant are in the pipeline:

Chen, M., Mehrotra, S.
Self-concordance and Decomposition Based Interior Point
Methods for Stochastic Convex Optimization Problem
To appear in SIAM Journal on Optimization.

Chen, M., Mehrotra, S.
Scenario Generation for Stochastic Problems via the Sparse
Grid Method
Technical report (under revision).

Mehrotra, S., Papp, D.
Generating Moment-matching Scenarios Using Optimization
Techniques
In preparation.
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