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. Mimetic Finite Difference Method |

HE mimetic finite difference (MFD) method mimics es-
Tsential properties of differential equations such as con-
servation laws, symmetries, maximum principles, and fun-
damental identities and theorems of a vector and tensor cal-
culus on polygonal and generalized polyhedral meshes.
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Figure 1: Admissible meshes: a distorted logically cu-
bic mesh with non-planar faces, a Voronoi-type polyhedral
mesh, a locally refined (AMR) mesh with degenerate cells.

THE MFD method works with discrete fields defined at
various mesh objects (nodes (N), edges (&), faces (F)
or cells (C)) and the first principles to build the primary op-
erators

GRAD" N =&, CURL'- &€= F, DIV':F-=C
The dual operators,

—~~—n~h —~~—h —~~—— h

DIV &£ =N, CURL :F—=E, GRAD :C — F,

are derived from discrete integration by parts formulas, e.qg.

W, GRAD (p)]x = —[DIV'(u"), pre

where
[uha Vh]f — UT vaa [pha Qh]c — PT MC Q

are L°-type inner products on a space F of face-based fields
and a space C of cell-based fields, respectively. By con-

struction, the dual anc}JIL primar;lll operators satisfy the discrete

identities, e.g. CURL GRAD =0,CURL"GRAD" = 0.

L*-type inner products

NLY properly defined symmetric and positive definite
matrices M r and M result in a convergent method.

The MFD method assembles matrix M~
from elemental matrices M r g, similar to a
finite element method. However, construc-
tion of the elemental matrices is algebraic

[2], e.q.

o consistency stability
Mrp =Mz +Mzp

® The matrix M%""*"" guarantees consistency of the dis-
cretization and comes from a local patch test.

® The matrix M","" is non-unique and ensures stability of
the MFD method. For a cubic mesh and the lowest order
discretization, each 6 x 6 matrix M?ﬁfbgl“y is defined by 6
parameters, and parameters may vary from cell to cell.

The matrix M~ g is the first-order quadrature rule for the L--
type inner product:
UgM]_jEVE ~ / u-vdx.
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H'-type inner products |

IN acoustic problems, an elemental matrix A, g must rep-
resent accurately an H'-type inner product:

E

The mimetic method builds this matrix algebraically using
again a consistency argument. The final decomposition has
the typical mimetic form [1]:

consistency stability
_l_ AN E .

® |n the case of simplicial meshes, the MFD method reduces

to the finite element method.

® The algebraic construction is a powerful tool for build-

ing high-order C*-continuous discretizations for thin plates

problems.
stability

® The matrix Aj; " Is non-unique and is defined by a few

parameters (10 for a cube). Number of parameters grows
quadratically with the number of vertices in cell £.

Il. M-Adaptation \

BJECTIVE of the m-adaptation is to solve the multi-
Oparameter optimization problem, i.e. to find the best
member of the MFD family of discretization methods for a
given problem.

Step 1. Formulate a physical or mathematical optimization
criterion.

Step 2. Reduce the global optimization problem to a set of
local once.

Step 3. Solve the local problems.

Acoustic wave propagation |

Ptt = CQAP-
The physical optimization criterion is minimization of numer-
ical anisotropy, I.e. reduction of variation of wave speed be-
tween different directions.
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Figure 2: Amplitude of a spherical wave at nodes of a cubic
mesh as a function of radius: FE (top) and optimized MFD
(bottom) snapshots after the wave has traveled 15 mean
wavelengths; \.cq../h = 10.

In each cubic cell, we use the same values for 6 available
parameters; thus, reducing the global optimization problem
to a single local one.

Steady-state Darcy flow in saturated medium |

Figure 3: Left: analytical solution with a discontinuous ten-
sor K. Right: undershoots (blue cells) and overshoots (red
cells) in the discrete pressure field p; calculated with the
original MFD method.

The mathematical optimization criterion is the M-matrix
property for matrix M, which guarantees the discrete
maximum principle.

Original MFD method Monotone MFD method

h min py, max py, &) min py, max py, &
P P P

P
1/16 |-6.203e-03 1.055e-01/3.62e-03|2.879e-12 1.012e-01 8.96e-04
1/32 -4.219e-03 1.013e-01/1.95e-03 8.927e-16 1.013e-01 9.57e-04
1/64 |-1.418e-13 1.013e-01/7.03e-04|2.172e-18 1.013e-01 5.26e-04
1/128-7.573e-141.013e-01 1.99e-04 7.343e-20 1.013e-01 1.81e-04
1/256 9.855e-21 |1.013e-01 6.66e-059.928e-21 1.013e-01 4.98e-05
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Study of a 1-parameter family of | el
MFD methods shows that the ’'free’ 1 R '
parameter can vary over two or- SN
ders in magnitude without destroy- K = i\
ing quality of the solution. Note that |~ ™.~ 777 7o
error minima for the velocity uand .|~ \ =
pressure p correspond to different
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values of the parameter.
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lll. Future directions |

UTURE development of MFD methods is aligned with de-
mands of various LANL-wide and DOE-wide projects:

® Linear and non-linear monotone MFD methods: ASCEM

project of the Office of Environmental Management.

® General MFD methods: Lagrangian hydrocode of the ASC

Program, LANL.

® Arbitrary-order MFD methods: modeling of elastic wave

propagation in Earth.
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