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I. Mimetic Finite Difference Method

THE mimetic finite difference (MFD) method mimics es-
sential properties of differential equations such as con-

servation laws, symmetries, maximum principles, and fun-
damental identities and theorems of a vector and tensor cal-
culus on polygonal and generalized polyhedral meshes.

Figure 1: Admissible meshes: a distorted logically cu-
bic mesh with non-planar faces, a Voronoi-type polyhedral
mesh, a locally refined (AMR) mesh with degenerate cells.

THE MFD method works with discrete fields defined at
various mesh objects (nodes (N ), edges (E), faces (F)

or cells (C)) and the first principles to build the primary op-
erators
GRADh : N → E , CURLh : E → F , DIVh : F → C.

The dual operators,

D̃IV
h

: E → N , C̃URL
h

: F → E , G̃RAD
h

: C → F ,
are derived from discrete integration by parts formulas, e.g.

[uh, G̃RAD
h
(ph)]F = −[DIVh(uh), ph]C

where
[uh, vh]F = UT MFV, [ph, qh]C = PT MCQ

are L2-type inner products on a space F of face-based fields
and a space C of cell-based fields, respectively. By con-
struction, the dual and primary operators satisfy the discrete

identities, e.g. C̃URL
h
G̃RAD

h
= 0, CURLh GRADh = 0.

L2-type inner products

ONLY properly defined symmetric and positive definite
matrices MF and MC result in a convergent method.

The MFD method assembles matrix MF
from elemental matrices MF ,E, similar to a
finite element method. However, construc-
tion of the elemental matrices is algebraic
[2], e.g.

MF ,E = Mconsistency
F ,E + Mstability

F ,E .

The matrix Mconsistency
F ,E guarantees consistency of the dis-

cretization and comes from a local patch test.
The matrix Mstability

F ,E is non-unique and ensures stability of
the MFD method. For a cubic mesh and the lowest order
discretization, each 6 × 6 matrix Mstability

F ,E is defined by 6
parameters, and parameters may vary from cell to cell.

The matrix MF ,E is the first-order quadrature rule for the L2-
type inner product:

UT
EMF ,EVE ≈

∫
E

u · v dx.

H1-type inner products

IN acoustic problems, an elemental matrix AN ,E must rep-
resent accurately an H1-type inner product:

PT
E AN ,EQE ≈

∫
E

∇p · ∇q dx.

The mimetic method builds this matrix algebraically using
again a consistency argument. The final decomposition has
the typical mimetic form [1]:

AN ,E = Aconsistency
N ,E + Astability

N ,E .

In the case of simplicial meshes, the MFD method reduces
to the finite element method.
The algebraic construction is a powerful tool for build-
ing high-order C1-continuous discretizations for thin plates
problems.
The matrix Astability

N ,E is non-unique and is defined by a few
parameters (10 for a cube). Number of parameters grows
quadratically with the number of vertices in cell E.

II. M-Adaptation

OBJECTIVE of the m-adaptation is to solve the multi-
parameter optimization problem, i.e. to find the best

member of the MFD family of discretization methods for a
given problem.
Step 1. Formulate a physical or mathematical optimization

criterion.
Step 2. Reduce the global optimization problem to a set of

local once.
Step 3. Solve the local problems.

Acoustic wave propagation

ptt = c2∆p.

The physical optimization criterion is minimization of numer-
ical anisotropy, i.e. reduction of variation of wave speed be-
tween different directions.

Figure 2: Amplitude of a spherical wave at nodes of a cubic
mesh as a function of radius: FE (top) and optimized MFD
(bottom) snapshots after the wave has traveled 15 mean
wavelengths; λmean/h = 10.

In each cubic cell, we use the same values for 6 available
parameters; thus, reducing the global optimization problem
to a single local one.

Steady-state Darcy flow in saturated medium

u = −K∇p, div (u) = Q.

Figure 3: Left: analytical solution with a discontinuous ten-
sor K. Right: undershoots (blue cells) and overshoots (red
cells) in the discrete pressure field ph calculated with the
original MFD method.

The mathematical optimization criterion is the M-matrix
property for matrix M−1

F ,E which guarantees the discrete
maximum principle.

Original MFD method Monotone MFD method
h min

P
ph max

P
ph εp2 min

P
ph max

P
ph εp2

1/16 -6.203e-03 1.055e-01 3.62e-03 2.879e-12 1.012e-01 8.96e-04
1/32 -4.219e-03 1.013e-01 1.95e-03 8.927e-16 1.013e-01 9.57e-04
1/64 -1.418e-13 1.013e-01 7.03e-04 2.172e-18 1.013e-01 5.26e-04
1/128 -7.573e-14 1.013e-01 1.99e-04 7.343e-20 1.013e-01 1.81e-04
1/256 9.855e-21 1.013e-01 6.66e-05 9.928e-21 1.013e-01 4.98e-05

Study of a 1-parameter family of
MFD methods shows that the ’free’
parameter can vary over two or-
ders in magnitude without destroy-
ing quality of the solution. Note that
error minima for the velocity u and
pressure p correspond to different
values of the parameter.

III. Future directions

FUTURE development of MFD methods is aligned with de-
mands of various LANL-wide and DOE-wide projects:

Linear and non-linear monotone MFD methods: ASCEM
project of the Office of Environmental Management.
General MFD methods: Lagrangian hydrocode of the ASC
Program, LANL.
Arbitrary-order MFD methods: modeling of elastic wave
propagation in Earth.
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