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Motivations  
!  Uncertainties of climate model are mainly from uncertainties of 
unresolved physics processes, e.g. physics scheme and parameters; 
!  Models are tuned towards the mean of observation, but there may 
exists compensation errors, which may no longer compensate when 
moving to a new climate regime. Parameters error may also compensate 
with each other; 
!  Climate model’s result depends nonlinearly to the combined changes in 
model parameters; 
!  The Optimal parameters  usually are scale-dependent . 

Conclusions and future work 
 Multi-level DA-SAMC algorithm features: 

  Efficient Bayesian model parameter calibration, which can greatly speedup the 
convergence and dramatically reduce the number of ensemble runs; 

  The proposed method is a scare-aware model parameter calibration method – 
it first uses coarse-resolution model to obtain a estimation of the uncertain 
parameter posterior distribution; then use it as a prior for fine-resolution model 
for fast convergence and computational efficiency enhancement; 

  The multi-level dual-annealing SAMC method can guarantee to find the global 
optimal parameter estimation and avoid local trapping, which limits the 
convergence of Very Fast Simulated Annealing (VFSA) method. 

 Parameters such as Downdraft, Entrainment and Cape Consumption Time show 
very important impact on convective precipitation.  
 Although only precipitation is constrained in this study, other climatic variables are 
controlled by the selected parameters so could potentially be benefited by the 
optimal parameters used in convective cloud scheme.   

Research Objective & Outline 

. 
Objective: 

!  Studying sensitivity of physic processes 
and simulations to parameters in climate 
model  
!  Reducing errors and deriving scare-aware 
optimal parameters used in cloud 
convection scheme 

Outline: 

!  DA-SAMC Algorithm 
!  Simulation & Results 
!  Conclusion & Discussion 

DA-SAMC Algorithm 

WRF model domain (Southern Great Plain, 
25°N-44°N and 112°W-90°W) with grid spacing of 
25 km. Shades indicate the terrain (Unit: m).  

Relative sensitivities of the response of 
the 14 meteorological variables to five 
CPS parameters.  

The spatial distributions of observed and WRF 
simulated (with 12-km spatial resolution) monthly 

mean precipitations for June of 2007, with default and 
optimal parameters.  

The spatial distributions of observed and 
simulated monthly mean precipitations with 
default and optimal parameters obtained at 

SGP, respectively, over North America 
Monsoon (NAM) region for July of 1991.  

Parameters of Kain-Fritsch Cumulus scheme (Kain, 2004) 
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!  Observe: A 6*6 grid, 6 observations with 
error on each grid point. 

!  Problem: Use those observations to 
estimate the boundary temperature T1 and 
T2 

Simlation & Results 
1) 2D Temperature Sensor Inversion 

!  With the increasing of the number of grids, 
the computational cost to get one numerical 
solution increases dramatically. 

!  Perform DA-SAMC on coarse grid can give 
a good rough estimate at a relatively small 
computation cost. 

!  Coarse grid: 4*4 with 2 obs/point 

!  Fine grid: 12*12 with 2 obs/point 

!  Single level: 

!  20 steps on fine grid 

!  Multilevel:  

!  100 steps on coarse grid 

!  10 steps on dense grid 

!  Takes less computation time 

!  Give more accurate results 

2) WRF regional climate model Inversion  

(Top) The response of model performance to five input parameters 
(Bottom) The frequency distributions of “good” experiments as function 
of each parameter.  

!  Energy Space 
!  U(X): X      E 

!  Weights 
!  Self-adjusting mechanism 

!  DA-SAMC  
!  Temperature Annealing 

!  Space annealing  
   Shrinking sampling space at       

each iteration based on the 
best cost value obtained so far 
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