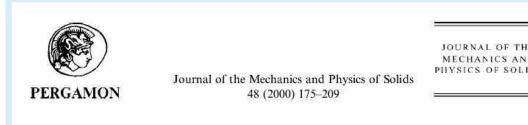


Mathematical and numerical analysis of peridynamics for multiscale materials modeling Qiang Du (PSU), Max Gunzburger (FSU), Rich Lehoucq (SNL)

INTRODUCTION

Silling proposes the peridynamic nonlocal continuum theory



Reformulation of elasticity theory for discontinuities and long-range forces

S.A. Silling* onal Physics and Mechanics Department, Sandia National Laboratories, Albuquerque New Mexico, 87185-0820, USA Received 2 October 1998; received in revised form 2 April 1999

Motivation: materials undergoing

OVERVIEW

Balance of linear momentum

$$\rho(\mathbf{x},t)\ddot{\mathbf{y}}(\mathbf{x},t) = \int_{\mathbb{R}^3} \big(\mathbf{t}(\mathbf{x}',\mathbf{x},t) - \mathbf{t}(\mathbf{x},\mathbf{x}',t)\big) d\mathbf{x}' + b(\mathbf{x},t)\big)$$

• Balance of linear momentum is equivalent to or action-reaction.

$$\int_{\Omega_1} \int_{\Omega_2} (\mathbf{t}(x', x, t) - \mathbf{t}(x, x', t)) dx' dx + \int_{\Omega_2} \int_{\Omega_1} (\mathbf{t}(x', x, t) - \mathbf{t}(x, x', t)) dx' dx = 0$$

$$\forall \Omega_1 \& \Omega_2, \Omega_1 \cap \Omega_2 = \emptyset$$

• Nonlocal because force may be nonzero even when Ω_1 and Ω_2 are not in contact

SUMMARY

- Peridynamic continuum theory reformulated using a nonlocal vector calculus
- Variational formulation leads to the well-posedness of the
 - peridynamic equilibrium equation for linear isotropic solids
 - ✓ nonlocal linear diffusion
- Deformation can be discontinuous
- Volume-constraints, the nonlocal analogue of boundary conditions, are crucial

- discontinuous deformation
- ✓ *Goal*: Dynamic material failure simulations
- ✓ *Key*: Nonlocal model of force via integral operators
- ✓ Generalization to "State-based" theory proposed in 2007
- A statistical mechanical basis for nonlocality appears in

	PHYSICAL REVIEW E 84, 031112 (2011)
Statis	ical mechanical foundation of the peridynamic nonlocal continuum theory: Energy and momentum conservation laws
	R. B. Lehoucq [*]
	Multiphysics Simulation Technologies, Sandia National Laboratories, Albuquerque, NM 87185-1320, USA
	Mark P. Sears [†]
	Multiscale Dynamic Materials Modeling, Sandia National Laboratories, Albuquerque, NM 87185-1322, USA
	(Received 1 July 2011; published 12 September 2011)

 \checkmark Important conclusion is that nonlocality is intrinsic to continuum balance laws

Recent review

dvances in Applied Mechanics lume 44, 2010, Pages 73-168

loi:10.1016/S0065-2156(10)44002-8 | How to Cite or Link Using DC Permissions & Reprints

Peridynamic Theory of Solid Mechanics

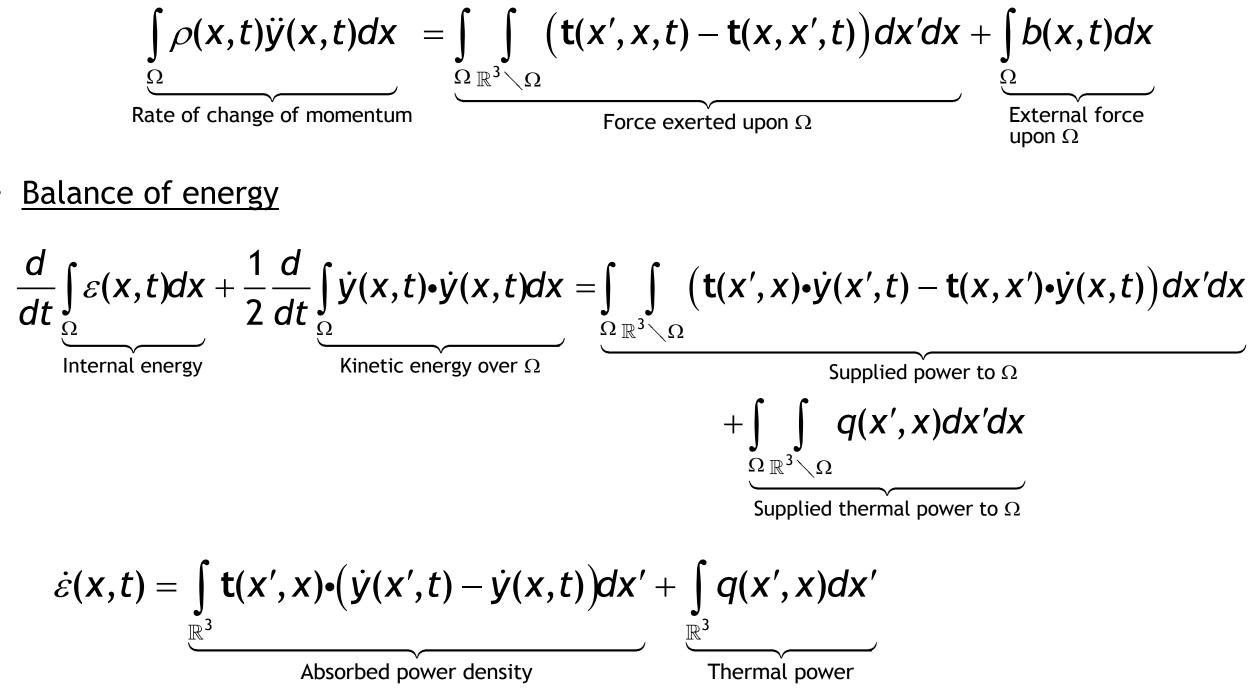
S.A. Silling^a and R.B. Lehoucg

Multiscale Dynamic Material Modeling Department, Sandia National Laboratories, Albuquerque, New Mexico 87185-1322, US Applied Mathematics and Applications Department, Sandia National Laboratories, Albuquerque, Ne

> \checkmark Balance of energy; second law of thermodynamics

OBJECTIVES

Mathematical analysis for the peridynamic continuum theory;



• Constitutive relations

Define the deformation state $\underline{Y}[x,t](x'-x) \coloneqq y(x',t) - y(x,t) \quad \forall x'$ so that the *Force*

State $\underline{T}[x,t] = \hat{\underline{T}}(\underline{Y}[x,t])$ depends collective motion

The needed relations can be written as

- Can now discuss the well-posedness of the balance laws; in particular for linear materials
- Can also show that the second law of thermodynamic is not violated for classes of materials

Related work

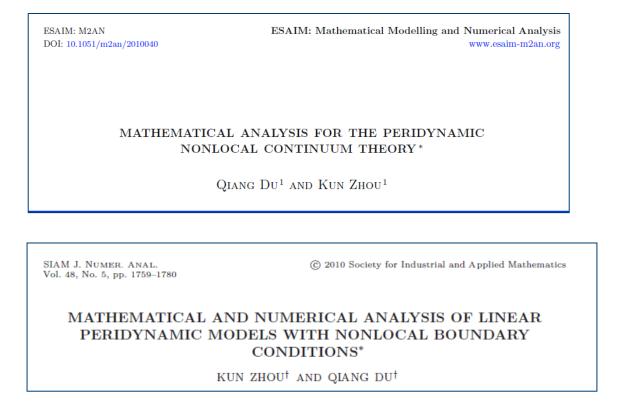
- Probabilistic interpretation for nonlocal linear diffusion
- Nonlocal, nonlinear advection
- Finite element formulation; see

Two Ph.d theses; Pablo Seleson (FSU) and Nate Burch (CSU)

PUBLICATIONS

- 1. A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws SAND 2010-8353J (Q. Du, M. Gunzburger, R. Lehoucq, K. Zhou).
- 2. An approach to nonlocal, nonlinear advection SAND 2011-3164J (Q. Du, J. Kamm, R. Lehoucq, M. Parks).
- 3. Analysis and approximation of nonlocal diffusion problems with volume constraints SAND 2011-3168J (Q. Du, M. Gunzburger, R. Lehoucq, K. Zhou)

preliminary theory given in



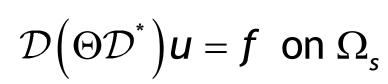
- ✓ In particular, provide a mathematical analysis for the state-based theory
- Describe *volume-constraints*, the nonlocal analogue of boundary conditions
- Analysis facilitated by the development of a nonlocal vector calculus; preliminary development given in

© 2010 Society for Industrial and Applied Mathematics MULTISCALE MODEL. SIMU Vol. 8, No. 5, pp. 1581-1598 A NONLOCAL VECTOR CALCULUS WITH APPLICATION TO NONLOCAL BOUNDARY VALUE PROBLEMS* MAX GUNZBURGER[†] AND R. B. LEHOUCQ[‡]

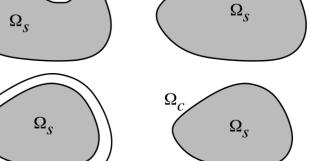
- Short-term goal: linear peridynamic materials, diffusion, numerical analysis
- Long-term goal: nonlinear peridynamic materials, coupling with the classic theory and molecular dynamics

CASE STUDY: NONLOCAL DIFFUSION

- Special case of the balance of energy of linear diffusion (modeling anomalous diffusion) serves to introduce the nonlocal vector calculus and provide well-posedness
- Consider the nonlocal Dirichlet problem (steady-state nonlocal diffusion)



u = g on Ω_c



 $\mathbf{t}(\mathbf{x}',\mathbf{x},t) = \mathbf{\underline{T}}[\mathbf{x},t] \langle \mathbf{x}'-\mathbf{x} \rangle = \mathbf{\underline{T}}(\mathbf{\underline{Y}}[\mathbf{x},t]) \langle \mathbf{x}'-\mathbf{x} \rangle$

 $q(\mathbf{x}',\mathbf{x},t) = Q[\mathbf{x},t]\langle \mathbf{x}'-\mathbf{x}\rangle = \hat{Q}(\mathbf{Y}[\mathbf{x},t])\langle \mathbf{x}'-\mathbf{x}\rangle$

- The solution constrained over the volume Ω_{c}
- A volume-constrained problem is the nonlocal analogue of a boundary value problem

 $(\mathcal{D}f)(x) \coloneqq \int (f(x,y) + f(y,x)) \cdot a(x,y) dy, \quad a(x,y) = -a(y,x)$

 $(\mathcal{D}^*u)(x,y) := -(u(y,t) - u(x,t))\alpha(x,y)$ $\mathcal{D}(\Theta \mathcal{D}^* u)(x) = 2 \int (u(y,t) - u(x,t)) \mathbf{a}(x,y) \cdot \Theta(x,y) \mathbf{a}(x,y) dy$

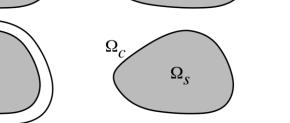
- \mathcal{D} and \mathcal{D}^* are the nonlocal divergence and it's adjoint; the operator \mathcal{DD}^* is the nonlocal Laplacian
- The kernel $\alpha \Theta \alpha$ determines the regularity for the volume-constrained problem; an integrable kernel implies that $\mathcal{D}\Theta\mathcal{D}^*u: L^2(\Omega_s\cup\Omega_c)\to L^2(\Omega_s\cup\Omega_c)$; no smoothing of the data
- Fractional smoothing occurs for $\alpha(x,y)\Theta(x,y)\alpha(x,y) \sim |x-y|^{-n-2s}$,0<s<1 because then $\mathcal{D}\Theta\mathcal{D}^*u: H^s(\Omega_s\cup\Omega_c)\to H^{-s}(\Omega_s\cup\Omega_c)$
- Can extend to nonlocal Neumann, Robin problems; also consider peridynamic linear elastic volume-constrained problems

- 4. Application of a nonlocal vector calculus to the analysis of linear peridynamic materials SAND 2011-3870J (Q. Du, M. Gunzburger, R. Lehoucq, K. Zhou)
- 5. A posteriori error analysis of finite element method for linear nonlocal diffusion and peridynamic models (Q. Du, L. Ju. L. Tian, K. Zhou)

ACKNOWLEDGEMENTS

 Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000

 DOE office of Advanced Scientific Computing Research (ASCR)



www.PosterPresentations