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Background: Multidimensional
Conservation Laws

•Attempt to develop theory, beginning about 1990
•Following

• Long history of computational results
• Successes in establishing well-posedness for 1-D systems

•Several groups:
• Computational: Bell, Colella, Henderson, et al [4]

• Tabak and Rosales [13]
• Hunter and Brio [7]
• Čanić, K et al [1, 9]

• Chen, Feldman et al [3]
• Elling and Liu [5]

Self-Similar Problems
aka “Two-Dimensional Riemann

Problems”

•System Ut + F (U)x +G(U)y = 0
becomes

−ξUξ − ηUη + F (U)ξ +G(U)η = 0
with ξ = x

t η = y
t

•Analogy with steady flow, Fx +Gy = 0
• Interest stems from some benchmark problems
•Motivates new mathematical techniques

Guderley Mach Reflection
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Context
• “Weak Shock Reflection” (small wedge angle,
near-sonic Mach number)

• von Neumann paradox
•New phenomenon predicted by Guderley [6]
•Noted by Čanić & K
•Discovered numerically by Tesdall and Hunter [14]
•Confirmed in experiments by Skews et al. [12]
•TSK simulation motivated Skews experiment [15]

Anatomy of a Supersonic Bubble

Bubble

Rarefaction

Shock
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?
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Reflected

Shock

•Shock formed by compression at sonic line
•Comparison: Trailing Edge of Transonic Airfoil
Kuz’min: Shock forms inside supersonic region [11]

Hyperbolic Shock Formation:
The Cusp Singularity

Standard 3/2 cusp surface W = W (x, t) is given by
W 3 − tW + x = 0

Solves Burgers equation Wt +WWx = 0
•Formation point (0, 0): Wx(x, 0) = −1

3x
−2/3

•Along shock WL,R = ±
√
t (parabolic X-section)
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•Typical of shock formation at a hyperbolic point
•Valid for genuinely nonlinear flux
•Valid for hyperbolic systems

Sonic Shock Formation:
Distorted Cusp
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TSDE


uux + vy = 0
vx − uy = 0

Hyperbolic u < 0:
λ = −

√
−u, ρ =

√
−u

RI: wy + (w/2)1/3wx = 0
W = w1/3 & Wy +WWx = 0

u(x, y) = −W 2(x, y):
ux(x, 0) = −1

3
x
2
−1/3

u(0, y) = −|y|2
Idea: ρ =

√
−u behaves like a cusp

Construction: TSDE Sonic Shock

Direct two compression waves towards the origin;
hold downstream flow exactly sonic
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Infinitesimal version (conjectured):
Downstream uL = x2u1(x, y) vL = x3v1(x, y)

(2u1 + xu1x)u1 + v1y = 0
3v1 + xv1x − u1y = 0

‘Subsonic Compression’

E. H. Kim, Nonlinear Wave System [10]:

Author's personal copy

E.H. Kim / J. Differential Equations 248 (2010) 2906–2930 2909

Fig. 1. Configuration.

ξa = χ+ =
√

p(ρ1) − p(ρ0)

ρ1 − ρ0
(7)

and

m1 =
√

[p][ρ] =
√(

p(ρ1) − p(ρ0)
)
(ρ1 − ρ0) > 0. (8)

The position where the incident shock S0 interacts with the sonic circle C1, denoted by Ξa , is

Ξa = (ξa,ηa), where ηa =
√
c21 − ξ2

a , (9)

which can be written in polar coordinates,

Ξa = (r1, θa), where θa = tan−1(ηa/ξa).

Once the incident shock S0 meets the sonic circle C1, it will interact and create a transonic shock,
denoted by S . We write Ξw to be the point at which the interacting shock S meets the vertical wall

Ξw = (ξw ,ηw) = (rw , θw), where θw = 3π
2

.

To be physical the interacting shock S must stay in between two sonic circles C0 and C1, that is,
the interacting shock S must satisfy the following condition:

E1. C0 < S < C1.

We assume further that there exists a positive constant τw = τw(ρ1/ρ0) such that

E2. rw � c0 + τw .

p = u− uR
q = v − vR

(uR + p)px + uRxp + qy = −uRuRx − vRy
qx − py = −vRx + uRy

Self-Similar Diffraction
(Hunter-Tesdall)

Numerical evidence [8]: shock forms at sonic point2 JOHN K. HUNTER AND ALLEN M. TESDALL
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Fig. 1. A weak shock at normal incidence to a screen. Solid lines are shocks; dotted lines are
expansion wavefronts.

In (1.2), the small positive parameter α measures the strength of the wave, and it
cannot be removed by a rescaling. The matching data (1.2) corresponds to a self-
similar radial sound wave that changes continuously from a compression in y > 0 to
an expansion in y < 0.

The spatial variables (x, y) in (1.1)–(1.2) are suitably defined “inner” spatial vari-
ables about S, rather the original spatial variables. The x-variable increases across
the wavefront, and the y-variable increases along the wavefront. The dependent vari-
ables (u, v) are proportional to the (x, y) velocity perturbations, and the pressure
perturbation is proportional to u. We summarize the derivation of the UTSDE and
the definitions of the variables in the Appendix.

In Section 8.1, we show numerical solutions of (1.1)–(1.2) for several different
small values of α. A shock wave forms by compression in y > 0 and diffracts into
the lower half space y < 0, where it dies out at some point and is continued by an
expansion wavefront. The shock appears to diffract by an angle that is of the order α
as α→ 0+; specifically, we find numerically that it dies out at a point with y/t ∼ −cα,
where c ≈ 5.75. This point appears from our numerical solutions to be on the sonic
line where the self-similar form of (1.1) changes type, and not inside the supersonic
region. The disappearance of a diffracting shock at a sonic point differs from the
formation of shocks in two-dimensional Riemann problems and transonic flows that
is caused by the focusing of characteristics reflected off a sonic line. Such shocks
typically form at supersonic points [14]. See [10] for an analysis of related problems.

The weakly nonlinear asymptotics for the solution near a point such as S is
subtle. A straightforward dominant balance argument based on transonic scaling and
matching with the global linearized solution is not sufficient to determine the size of
the region near S where nonlinearity becomes important. Related to this difficulty
is the fact that, as we show in Section 5, the UTSDE and the matching condition
(1.1)–(1.2) are self-similar in the similarity variables (x/t, y/t). Thus, remarkably,
this problem possesses a second self-similarity with respect to the original self-similar
variables. The second self-similarity appears to be broken, however, by the difference
between the conditions required at a shock and an expansion wavefront, so that the
full solution is not self-similar. We do not carry out a complete analysis of these issues
here, but we obtain numerical solutions of (1.1)–(1.2).

The phenomenon of a shock that propagates into a constant state and diffracts
self-similarly into an expansion wave is not specific to the screen problem and is likely
to occur in other two-dimensional Riemann problems for the compressible Euler equa-
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UTSD model


wθ + (ρ + u)uρ − u/2 = 0
uθ − wρ = 0Asymptotics:

• (uR, vR) = (0, 0)
•uL = −ρ

2 + ρ2b(ρ, θ)
• 6b2 + bθθ + . . . = 0
• [u] = 3θ2

2 along shock

Conclusions
Bad conjecture: Shocks don’t form at sonic points
•Sonic shock Riemann solutions exist
• Infinitesimal steady sonic shock generation

• requires compression wave in the hyperbolic region
• is unstable to small perturbations of the data
• differs from strictly hyperbolic shock formation

•Quasi-steady (self-similar) problems can
generate in the subsonic compression

•Quasi-steady shocks have a different form (no
derivative blow-up)

•Shock growth rate is related to nonlinearity in
the characteristic speeds and to compression
rate of characteristic curves

Current project: Clarify these preliminary results
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