
Coarse-graining the dynamics of (and on) evolving graphs: 
Algorithms and Computation. 

Yannis Kevrekidis, students and collaborators (Princeton University) 

Dynamical models and coarse-graining Additional results and coarse-graining Limits of dense graph sequences A simple example: random evolution of networks 

Kuramoto model on a static network Heterogeneity and the coarse-grained model Coarse integration, coarse fixed points Using the Graph Laplacian 

Opinion propagation on a static network One more illustration: SIR on a heterogeneous social network Polynomial chaos Development of correlations 

Dynamical models of networks 

 Usually presented in terms of nodes and edges                                        
(i.e., using detailed, “microscopic” rules of evolution).  

 Macroscopic “system-level” description is usually NOT available 

 OBJECTIVE: Find coarse models (macroscopic descriptions)  

     for the evolutionary network problems. 

Equation-free modeling for coarse-graining multi-scale systems 

 The key step is to define suitable coarse variables (observables);                   
e.g., the network degree distribution.   

 Then, lifting and restriction operators are constructed  to translate  

     between fine and coarse states as shown below. 
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Coarse projective integration (CPI) 

 A primary focus is on the identification of “suitable” coarse variables. 

 This is a “coarse time-stepper”, which ACTS AS A SUBSTITUTE                
FOR  UNAVAILABLE MACROSCOPIC EQUATIONS. 

Figure: Sample 5 x 10 network 

Synchronization of coupled oscillators on a network 

 General coupled oscillator model 

 Phases, θi of oscillators 

 Heterogeneous  frequencies, ωi 

 Kuramoto model  on a network: 

 A is the adjacency matrix of the network;  

           Aij is 1 if there is a link between nodes i and j. 

 K is the coupling strength  

 Networks constructed to facilitate separation of 
timescales 

5 communities with 10 members each 
 

Heterogeneous communities 
Watts-Strogatz model 
(Varying average degrees, 

Varying rewiring probabilities) 
 

Leaders are connected by  
a complete network 

500 oscillators 

10 x 50 network 

K = 0.5 

w ~ N(0,1/15) 

First 10 eigenvectors 

Steady state 

Define: Normalized graph Laplacian L of the network (A) 

Define: Order parameter (r) as  

a measure of synchronization 

A random evolution model of networks 
Dynamics at each time step: 

• Choose 2 random nodes and connect them if not 
already  connected 

• Remove an edge with probability ‘p’ 

 

 

Direct simulation with the same degree distribution  

but two different distributions of clustering coefficients 
Distribution of clustering coefficients 

Time 
Time 

• Blue curves : initial graph was an Erdos-Renyi random graph 

• Red curves : initial graph was created using the Havel-Hakimi algorithm  

                                 to match the degree distribution of the previous case 
 

To explain this slaving of triangles, some tools from the theory of convergent graph 
sequences will be used. 

 

Distribution of degrees 

Simulations 
• 100 networks with 100 nodes each 

• p = 0.9 

• Degree distribution evolves smoothly 

• But, do we need other statistics (like triangles) to predict this evolution? 

 

Blue - Coarse projective  integration 

       (using just the degree distribution) 

Red - Direct simulation 

       (detailed model) 

Heal 150;  
Evolve 10;  
Project 10 

Coarse graining using (discretized) degree distribution as the coarse variable 

 

• Definition: homomorphism density of F onto G 

 t(F,G) = probability that a random mapping from (“small” test subgraph) F 
to (“big” graph) G, V(F) → V(G)) is a homomorphism 

• Consider a graph, G, in ‘n’ vertices and a test subgraph, F, in ‘k’ vertices 

 

• Now, consider a sequence of graph {Gn} in n vertices 

 

 
• If the limit exists, the graph sequence is said to be ‘convergent’ 

Cherry density ~ 2/(1-p) 

Triangle density ~ 3/(1-p) 

Graphon ~ 1/(1-p) 

10 for p = 0.9 

20 for p = 0.9 

30 for p = 0.9 

cherry 

K3 

• In the limit of number of nodes going to infinity, the limit object of Gn      
is a graphon W(x,y) on which homomorphism densities of small       
test subgraphs F can be found using: 

(Mean of) Normed degree* 
Convergence rate (as t →∞) = 1/(1-p) 
Does not depend on higher order 

information (like triangles) Decoupled from other quantities 

Edge density 
Convergence rate = 1 

As, t →∞, convergence rate for 

Oscillator number 
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K = 0.1 K = 0.5 

Coarse projective integration 
Heal 100; Evaluate 25; Jump 25 

Coarse projective integration 
Heal 20; Evaluate 5; Jump 5 

Coarse fixed point 

Coarse limit cycle 
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Blue – From direct simulations; Red – From coarse model 
500 Phases  10 Projection coefficients; 50 % Simulation, 50% Projection 
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Newton-GMRES 

( ) (0) exp( )x t x tγ= ⋅ −In the absence of information 

Arrival of public information ( ) ( )x t x t ε ±= +

Arrival of private information ( ) ( )x t x t e±= +

Every person has an emotional state, x ∈ [-1,1] 

 

 

 

 

 

Social network provides the private information 

p=0.02 

p=0.094 
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• Geometric degree distribution 

 

• p = 0.5 (Truncated at 140) 
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• N = 10,000 individuals  

• Regular random graph (fixed degree) 

• Age distribution from empirical distribution 

• States: 

 S – Susceptible; I – Infected; R – Recovered 

• Transition Probabilities : 

• λ : Infection (S to I)     (depends on age) 

• μ : Recovery (I to R)     (depends on density of I) 

• ε : R to S 
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Portions of  
the network state  

(density of I)  
correlate strongly with  

the heterogeneity 
(age). 

 

STEP 2: 
Projection onto Laplacian eigenbasis 

Coarse variables, zj  

STEP 1: 
Accounting for correlation 

Coarse variable, c 

Laplacian eigenbasis, {vj} Complex phase 

• Correlations develop between this “excess” phase  

                  and the  heterogeneity (intrinsic oscillator frequency). 

• The slope c of this correlation is plotted against time (new coarse variable) 

DEFINE: Excess phase 

Coarse 
model 
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Blue dots – Actual data of  

average state versus degree. 

Red curve – Curve fit by  

minimizing weighted residual. 

Coarse variables: Average state  

                                    as a function of degree. 
 

We should weigh this function  

        according to the relative density of nodes  

               in different degree classes. 

Although  
average degree vs state 

appears not well-fit  
at high degrees,  

this density weighted plot 
shows a good fit. 

• In UQ, uncertainty parameters have an associated probability 
distribution. 

• Here, DEGREES have an associated probability distribution. 

• IDEA: Represent the solution to the problem  

                               (state as a function of degree) 

 with the help of orthogonal polynomial basis functions 

 i.e., polynomials that are orthogonal with respect to w(d) 

                               < pi , pj >w(d) = δij  

 

• The coefficients can then be found as: ci = < pi , f >w(d) 

 

• Appropriate orthogonal polynomials using  

 the Wiener-Askey scheme for some distributions  

 (weight functions) are shown in the table (right). 

Distribution 
Orthogonal 
polynomial 

Gaussian Hermite 

Poisson Charlier 

Gamma Laguerre 

Binomial Krawtchouk 

The evolution of the function  f(d)  
now becomes                                 

the evolution of the coefficients, ci. 
These coefficients are our coarse variables. 
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Again, state is written as a function of heterogeneity,      
      in terms of basis functions inspired by the heterogeneity distribution 
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Time 

Time 

Eigenvalues 

Eigenfunctions 

P – probability density function of X 

SDE for the normed  
degree of the nodes 

Equations for the degree distribution 

(definition) 

 

Results for our example using these concepts: 

 EQUATION-FREE AND VARIABLE FREE MODELING FOR COMPLEX/MULTISCALE SYSTEMS: Coarse-grained computation in science and engineering using fine-grained models; R.R.Coifman, Yale, co-PI  

 L. Lovász and B. Szegedy, J. Comb. Theory Ser. B 96, 933 (2006) 

*Normed degree = (degree/number of nodes) 

Laplacian eigenbasis, {vj} Complex phase 
(Corrected phase angles) 

Projection onto Laplacian eigenbasis 
Coarse variables, zj  

D. Xiu and G. E. Karniadakis, SIAM Journal on Scientific Computing 24, 619 (2002). 
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