Fusing Models and Data for a Dynamic Paradigm of Power Grid Operations

Zhenyu Huang*, Greg Welch**, Ning Zhou*, Yulan Li*, Patrick Nichols*, Daniel Chavarria* *Pacific Northwest National Laboratory, Richland, WA 99352 **University of North Carolina at Chapel Hill, Chapel Hill, NC 27599

Driver: Clean and Efficient Power Grid

Grid Evolution Meeting Information Revolution

The nation's power grid faces new challenges driven by the expectation for a clean and efficient grid, in addition to being affordable, reliable, and secure,

Vision: Dynamic Paradigm of Power Grid Operations

Fuse theoretically-based grid model with measurement data for real-time estimation of dynamic states that drives look-ahead simulation and dynamic contingency analysis.

Real-time Estimation of Dynamic States

- Know where we are

- Advanced the Kalman Filter technology for estimating dynamic states through fusion of models and data, enabling analysis of non-linearity and discontinuity.
- Developed methods for measurement selection, sensor placement, and uncertainty quantification.
- Developed software codes that scale to 1000s of cores, moving towards to 100,000 cores.

Look-ahead Dynamic Simulation

- Know where we are going
- Achieved 14x speed-up for a 400 machine system. Speed-up performance is expected to be better with larger system sizes (e.g., the western US power system has 3000 generators).

Dynamic Contingency Analysis - Know where we might be

- Developed a platform for massive N-x contingency analysis
- Implemented dynamic load balancing schemes for maximum processor utilization
- Achieved close-to-linear scalability with large-scale power grid models

Impact

High-fidelity real-time grid analysis that enables a real-time dynamic view (versus today's static view) and predictive control capabilities through look-ahead dynamic simulation and dynamic contingency analysis.

- · Real-time predictive grid operation for faster response and emergency management
- Effective management of large-scale integration of smart grid technologies such as renewable generation, demand response, plug-in hybrid vehicles, and distributed generation.
- · Better asset utilization to maximize power transfer capabilities and defer transmission expansion.

Contact Pacific Northwest

Zhenyu (Henry) Huang (509) 372-6781 zhenvu.huang@pnnl.gov

Greg Welch (919) 962-1819 welch@cs.unc.edu

www.pnl.gov

U.S. DEPARTMENT OF