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Abstract

We present a hybrid method for simulating kinetic equations with multi-
scale phenomena in the context of linear transport. The method consists
of (i) partitioning the kinetic equation into collisional and non-collisional
components; (ii) applying a different numerical method to each compo-
nent; and (iii) re-partitioning the kinetic distribution after each time step
in the algorithm. Preliminary results show that for a wide range of test
problems, the combination of a low-order method for the collisional compo-
nent and a high-order method for the non-collisional component provides
a level of accuracy that is comparable to a uniform, high-order treatment
of the entire system.

Background

Problem Setup. We consider a single-group, linear transport equation
of the form

1

c

∂ψ

∂t
+ Ω · ∇xψ + σtψ =

σs

4π
〈ψ〉 +Q, (1)

where the angular flux ψ depends on position x ∈ R
3, direction of flight

Ω ∈ S
2 (the unit sphere), and time t > 0 and is defined so that c−1ψ

gives the number density of particles at time t with respect to the measure
dxdΩ. The particle speed c is a fixed positive scalar andQ = Q(x,Ω, t) is a
source, which we assume is known. The quantities σa, σs, and σt = σa+σs

are the absorption, scattering, and total cross-sections. They are assumed
to be functions of position only. Angle brackets are used to denote inte-
gration over S

2 and φ := 〈ψ〉 is the scalar flux.

Challenge. The use of implicit numerical schemes introduces coupling
between spatial derivatives in the transport operator and the angular redis-
tribution which occurs via particle scattering. The resulting linear systems
can be difficult to solve. In regimes with low levels of scattering, a high
degree of angular resolution is needed. However, because the angular com-
ponents of the kinetic distribution are weakly coupled, the work required
per unknown is relatively small. On the other hand, strong scattering
requires a relatively small number of unknowns to resolve angular depen-
dencies, but the unknowns are strongly coupled. The consequence of this
dichotomy is that a single uniform method will have a large number of
strongly coupled components.

Previous Work. The difficulty in handling this type of multiscale prob-
lem has been addressed in several ways, the main idea of each being to
use low-order models as preconditioners in the solution procedure for a
high-resolution angular discretization. For discrete ordinate calculations,
diffusive approximations are often used to speed up the convergence of
iterative solvers in strongly scattering regimes. The prototype for this ap-
proach is diffusion synthetic acceleration (DSA), but the ideas can also be
reformulated as preconditioners for modern Krylov solvers [1, 8]. Another
well-known approach to acceleration involves the use of nonlinear methods
which combine a high-resolution discretization in angle with a low order,
moment-based approximation to accelerate convergence [3, 4, 7].

Splitting

First Collision Source. Following [2], we write ψ as the sum

ψ = ψc + ψu , (2)

where the collided flux ψc and the uncollided flux ψu satisfy

1

c

∂ψu

∂t
+ Ω · ∇xψu + σtψu = Qu, (3a)

1

c

∂ψc

∂t
+ Ω · ∇xψc + σtψc =

σs

4π
(〈ψc〉 + 〈ψu〉) +Qc, (3b)

and Q = Qu + Qc. The equation for ψu has no angular couping no cou-
pling in angle and is independent of ψc. The angular average of ψu acts as

a (first-collision) source for the collided equation. Integrating (3) in time
with backward Euler gives

ψn+1
u − ψnu
c∆t

+ Ω · ∇xψ
n+1
u + σtψ

n+1
u = Qn+1

u , (4a)

ψn+1
c − ψnc
c∆t

+ Ω · ∇xψ
n+1
c + σtψ

n+1
c =

σs

4π

(

〈ψn+1
c 〉 + 〈ψn+1

u 〉
)

+Qn+1
c .

(4b)

The original idea of this splitting was to evaluate ψu using Monte-Carlo
or ray tracing from localized sources and then use discrete ordinates to
evaluate ψc. Here we propose more generally to use to any sufficient high-
order angular discretization for ψu and any sufficient low-order angular
discretization for ψc.

Particle Relabeling. Roughly speaking, we expect that scattering
events will isotropize ψc, making lower-order methods sufficient. It turns
out that this is not exactly the case. Indeed, although scattered particles
are distributed isotropically in angle, they need not remain so unless more
collisions occur. To accommodate for this fact, we relabel the collided par-
ticles as uncollided after each time step. With respect to the semidiscrete
scheme (4), this gives

Ω · ∇xψ
n+1
u +

(

σt +
1

c∆t

)

ψn+1
u =

1

c∆t
(ψnc + ψnu ) +Qn+1

u , (5a)
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)

+Qn+1
c .

(5b)

The collided flux at time tn now acts as source for the uncollided flux at
time tn+1. By relabeling the particles in this way, we gain high-resolution
transport information from the uncollided equation. The addition cost in
doing so lies in specifying the closure that must be computing when map-
ping from the low-order angular discretization of ψnc , generated by (5b),
to the high-order one which is needed in (5a). In practice, we have so far
used very simple closures.

Numerical Results - 1D

The Plane Source. The plane-source problem is a torture test of
whether an angular discretization method can accurately approximate
solutions with strong discontinuities. Particles are emitted from an ini-
tial planar source into an infinite medium. The problem can be rep-
resented in one spatial dimension with x being the signed, normal dis-
tance to the source plane. We assume a purely scattering material with
σt = σa = 1.0, Q = 0, c = 1, and initial conditions ψu(x, µ, 0) = 0.5δ(x)
and ψc(x, µ, 0) = 0. Hybrid Monte-Carlo/diffusion solutions are given in
Figure 1. Discrete ordinate hybrid solutions are given in Figure 2a.
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Figure 1: Plane source problem, comparing the Monte Carlo/Flux-
limited diffusion (MC-FLD) hybrid, the (semi)-exact transport solution,
and the flux-limited diffusion (FLD) solution.

Reed’s Problem. Reed’s problem [9] involves a slab of length L = 8.0
that is composed of five materials having significantly different properties.
Discrete ordinate hybrid solutions are given in Figure 2a.

Region 0 ≤ x < 2 2 ≤ x < 3 3 ≤ x < 5 5 ≤ x < 6 6 ≤ x < 8
σs 0.9 0.1 0.0 0.0 0.0
σa 0.1 0.2 0.0 5.0 50.0
Q 0.0 1.0 0.0 0.0 50.0

Table 1: Material properties for Reed’s problem.
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(b) Reed’s Problem

Figure 2: Discrete ordinate solutions using two (S2) and twenty (S20)
Gauss-Legendre quadratures.

Numerical Results - 2D

The Lattice Problem. We consider a checkerboard of highly absorb-
ing material embedded in a scattering material. This problem, originally
due to Brunner [5, 6], has become a common test problem of angular dis-
cretizations of the transport equation. The problem domain (see Figure
3a) is 7 cm × 7 cm with vacuum boundaries. The red squares are pure
absorbers with σt = σa = 10 cm−1; the light blue and white regions are
pure scatterers with σt = σs = 1 cm−1; the white region also has an
isotropic source Q = 1 cm−3 s−1. Initially, there are no particles in the
domain.
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(b) Monte Carlo Solution
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(c) S8
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(d) S36
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(e) FLD-S8 Split
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(f) FLD-S36 Split

Figure 3: The layout and solution for the lattice problem using sev-
eral angular discretization techniques. The color scale on the figures
shows log10 φ at t = 3.2 s. Wall times denoted in the figures are the
computational time to get a solution for each problem. The Monte
Carlo solution is taken from [5] for reference.

The Hohlraum Problem. We consider a variation of a simplified
hohlraum configuration that has been considered previously in [5] and is
applicable to the study of inertial confinement fusion. (The original prob-
lem is coupled nonlinearly to the material via blackbody radiation. Here
we use scattering to represent the emission of particles from the mate-
rial.) The layout and dimensions of the problem are shown in Figure (a).
The spatial domain is made up of two materials: a dense material with

σt = 100 and σa = 99 that makes up the walls and central target and a
dilute, purely scattering, material with σt = σs = 0.1 that sits between
the walls and central target. The dense material is representative of the
solid density materials in an experiment and the dilute material is repre-
sentative of the material ablated from the walls. The problem has vacuum
boundary conditions on the top, bottom, and right sides and an isotropic
incoming boundary condition is imposed on the left boundary.
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Figure 4: Layout and solutions to the hohlraum problem at t = 1.3
s. In these figures the color scale shows log10 φ and negative values
of φ are shown in black. The wall times denoted in the figure are the
computational time to get a solution for each problem.
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