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Algorithms for slow manifolds of saddle-type

Traveling waves of FitzHugh-Nagumo equation

Invariant manifold tangencies in CU bifurcations

Mechanisms for mixed mode oscillations

Singular Hopf Bifurcation
Philipp Meerkamp

Models of BZ Reaction
Chris Scheper

Normal Forms of Dynamic Hopf Bifurcation
Hinke Osinga

Smooth Multivariate Interpolation

• Occurs when an equilibrium crosses a fold of a slow manifold
• Normal form in systems with two slow variables: three “secondary” parameters

x ̇ = (y − x2)/ε 
y ̇ = z − x 

z ̇ =−μ−ax−by−cz
• Comprehensive analysis of bifurcations in this normal form
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a red cross. The SAOs of the MMO clearly oscillate around the critical manifold. Above
the dynamic Hopf bifurcation, the SAOs have decreasing amplitude. The amplitudes of
the SAOs are increasing below the Hopf bifurcation. Figure 2(b) shows each individual
species of the 118 MMO computed using the rescaled differential equation. Note that the
slow quantity is monotone while the other species are rapidly oscillating. Each individual
species has been normalized to the interval [0,1] using an affine transformation. The
maxima and minima of the species are given in Table 5.
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Figure 2: (a) A 118 MMO in phase space at kf = 1.37 · 10−4. The critical manifold is shown in
cyan. A Hopf bifurcation of the layer equation is indicated by a red cross. (b) The scaled 118

MMO normalized to the interval [0, 1] by an affine transformation. The minima and maxima of the
chemical species are given in Table 5.

[HBrO2] (M) [Br−] (M) [Ce(III)] (M) [BrMA] (M)
min 3.483408·10−8 4.293553·10−7 8.096239·10−4 4.728733·10−3

max 5.290276·10−6 6.328551·10−6 8.323484·10−4 4.842014·10−3

Table 5: Maximum and minimum values of the normalized concentrations seen in Figure 2(b).

We note that Model DQSS is insensitive to small perturbations of the computed left
eigenvector in the low flow rate regime. After considering w calculated by varying the
flow rate and the position along the critical manifold at which w is calculated, we found
that the monotonicity of the slow quantity given by equation (11) is unaffected by these
choices. Therefore, we can approximate the slow variable by choosing a global rescaling
of Model DQSS. For convenience, we’ve chosen the weakest left eigenvector w computed
at the dynamic Hopf bifurcation for a flow rate of kf = 2.0 · 10−4 as our global rescaling
weights. This flow rate was chosen because kf = 2.0 · 10−4 is roughly in the middle
of the low flow rate complexity. At kf = 2.0 · 10−4, the weakest eigenvalue is given by
w = (0.908367056,−0.235697237, 0.277281183, 0.205988466). Roughly interpreted,

4HBrO2 − Br− + Ce(III) + BrMA

can be considered a slowly reacting chemical quantity.
As noted above, we compute the critical manifold using continuation methods [13] to

find the equilibria of the layer equation: at high flow rates we use the unscaled equation
(3) and at low flow rates we use scaled system (3a–3c, ṡ = 0). However, Figure 3 shows
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not common practice to show time series over an interval of (low or high) flow rate complexity.
As a result, it is difficult to compare experimentally observed time series to those seen in
simulations.

6.1 Texas Experiments

Györgyi and Field [29] compared the trajectories of DEQ and DQSS to the results of the Texas
group [64, 52, 53]. We will not recount all results, but the main findings are that the PCS
observed in Model D replicated those observe experimentally quite well. Model DQSS performs
particularly well at low flow rates, while Model DEQ performs well at high flow rates. While
the low flow rate parameters are taken directly from experiments, only the MA and Ce(III)
concentrations are used at high flow rate parameters. The other two parameters, BrO−

3 and
H2SO4, may have been altered specifically to fit the Texas data. Regardless, experimentally
relevant values of these parameters were used in the numerical simulations.

6.2 Bursting solutions

Sørenson first observed complex BZ dynamics in a CSTR [74, 75]. These bursting solutions
were later rediscovered by Marek and Svobodoba [43] and Maselko and Swinney [44], among
others. The experimental parameter values used in these experiments can be found in Table 7.

Experiment MA BrO−

3 103· cat H2SO4 Temp (◦C)

Sørenson [74, 75] 0.5 0.09 0.8 (Ce,Mn) 1.5 25
Marek & Svobodoba [43] 0.032 0.01 0.2 1.5 40
Maselko & Swiney[44] 0.0813 0.0275 0.416 (Mn) 1.5 25

[45] 0.3 0.0275 0.416 (Mn) 1.5 25

Table 7: Studies that exhibit bursting solutions.
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Figure 10: (a) A bursting pattern observed by Marek and Svobodoba [43] at (MA, BrO−
3 , Ce) =

(0.066, 0.025, 2·10−4) and kf = 6.94 · 10−4. Q: Should we get permission to use this?. (b) An
bursting solution generated by Model DEQ at kf = 8.6 · 10−4 for (MA, BrO−

3 , Ce) = (0.066, 0.018,
2·10−4).

Figure 2 of Reference [43] shows a bursting solution for the experimental parameters (MA,
BrO−

3 , Ce) = (0.066, 0.025, 2·10−4) at a flow rate of kf = 6.94 · 10−4 s−1. Figure 10 shows the
bursting pattern observed by Marek and Svobodoba [43] and the bursting pattern generated
by Model DEQ. The interspike time, i.e. the quiescent phase of the burst, is highly sensitive
to BrO−

3 in this regime. The interspike time increases as BrO−
3 is increased. For MA = 0.066
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• Curve T are parameters where repelling slow manifold is tangent to unstable 
manifold of equilibrium  

• T curve bounds region of mixed mode oscillations in systems with “global return”
• Underway: Computer verified proof of these tangencies

(mu,a,b,c) = (0.0022,-0.05,0.001,0.1) (b,c) = (0.001,0.1)

*

• Dynamic Hopf bifurcation is Hopf bifurcation in fast variables of slow-fast system
• First Lyapunov coefficient determines when bifurcation is subcritical or supercritical
• Result 1: First Lyapunov coefficient may change sign at singular limit
• Result 2: When this happens, there is a nearby torus bifurcation 

• Diagram: Hindmarsh-Rose model of neuronal bursting for two different values of 
epsilon. The bifurcation is supercritical but quickly undergoes torus bifurcation.

• Theoretical analysis introduces analytically tractable example

• Belousov-Zhabotinsky reaction has mixed mode oscillations in stirred tank
• Many differential equations models proposed and studied (from 1972) 
! but none have been shown to match extensive experimental data
• Extensive analysis of four dimensional model proposed by Gyorgyi and Field
! as reduction of more detailed mass action kinetics
• No explicit separation of time scales, but use multiple time scale methods

• Two separated regions of mixed mode oscillations  
• Dynamic Hopf bifurcation in region of low flow rate MMOs (shown)
• Singular Hopf bifurcation in region of high flow rate MMOs

• Comparison of model results with published time series (Marek and Svobodoba)

• Interpolation is mature subject for functions of one variable: much less is known for
! functions of more variables
• Subdivision algorithms of computer graphics give C1 or C2 smoothness with 
! complex rules at exceptional nodes of mesh

• Whitney extension theorem and recent improvements (Fefferman et al.) provide
! theoretical context
• Goal: Simple, infinitely differentiable interpolation with good accuracy for points on
!  smooth surface

• Algorithm: partition of unity with carefully selected cover based upon Delaunay 
! triangulation of mesh
• Initial tests are encouraging: figure is part of torus and the approximation errors


