A fast direct solver for structured matrices
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Introduction

We have developed a fast direct solver for structured linear
systems based on multilevel matrix compression. Starting
with a hierarchically block-separable matrix [2], we embed an
approximation of the original matrix into a larger, but highly
structured sparse one. The resulting representation allows
for efficient storage, fast matrix-vector multiplication, fast ma-
trix factorization, and fast application of the inverse.

The algorithm proceeds in two phases: a precomputation
phase, consisting of matrix compression and factorization,
followed by a solution phase to apply the matrix inverse. For
boundary integral equations which are not too oscillatory,
e.g., based on the Green’s functions for the Laplace or low-
frequency Helmholtz equations, both phases typically have
complexity O(N) in two dimensions, where N is the num-
ber of discretization points. In our current three-dimensional
implementation, the corresponding costs are O(N3/2) and
O(N log N) for precomputation and solution, respectively.
Extensive numerical experiments show a speedup of ~ 100
for the solution phase over modern fast multipole methods;
however, the cost of precomputation remains high. Thus, the
solver is particularly suited to problems where large numbers
of iterations would be required.

(1) Reduced sensitivity to the conditioning of A.
(2) Fast application of A~! to multiple right-hand sides.

(3) Efficient handling of low-rank perturbations of A.

Several closely related efforts:
e H-matrices (Hackbusch et al.)
e HSS matrices (Gu, Chandrasekaran, et al.)

e skeletonization-based schemes (Martinsson and Rokhlin,
G-, Gueyffier, Martinsson, Rokhlin).

Structured matrices

Let Ax = f be written in the form

Ap1x1 + Ajpoxo + - - '—%./1lp)qp = 1
Ao1x1 + Agoxo + - - '—%./12p)qp fo

(1)
f1p13(1 + f1p2)(2 + - ﬁ—./ﬁpp)ip = f,,

where x; and f; are complex vectors of dimension N; and
Aj; € CNxXNi Assuming N = 3°P N, solution of the
full linear system by classical Gaussian elimination is well-
known to require O(N?) work.

Definition The matrix A is said to be block-separable [2] if
each off-diagonal submatrix A;; can be decomposed as the
product of three low-rank matrices:

A= LiS;iR; (2)

where L; € CN>*k g, ¢ CM¥Nand R; € ChNN, with
k! < N; and kj < N;. Note that in (2), the left matrix L; de-
pends only the index 7 and the right matrix 12; depends only
on the index ;.
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A=D+ LSR, (3)

where
D = (4)
Ap i

IS a block-diagonal NV x N matrix consisting of the diagonal
blocks of A, and

0 Sio - Slp
R ®
_Spl Sp?"' 0

is a dense K, x K. matrix, where K, = Y7 kI and K. =
Zle k¢, with zero diagonal blocks. L and R are given by

I R
L= .. |, R= . (6)
_ Z;P fzp

They are block-diagonal N x K, and K.x N matrices, respec-
tively. This is, of course, an effective compression of A only
when K., K. < N. A useful feature of the representation (3)
IS that it permits rapid inversion. To see this, let z = Rx and
let y = Sz. We can then write the original system in the form

D L 1 [z b ]
R —1 y|l=10]. (7)
-1 5 | |z 0

Such a factorization can be computed recursively if the ma-
trix supports the block-separable property at each level of
the hierarchy. The result is a telescoping representation

A~ DWirl) [D(Q) Iy J©) ( DWW L 1MNgpN). ) R<2>} )

Example: Suppose ¢ (z) = [ K (x,y) p(y) dy with K(z,y) =
log||z — y||, discretized at N = 8192 points in the unit square,
and compress to relative precision ¢ = 1073 using a five-level
quadtree-based scheme.

Ny = 8192 N1 = 7134 No = 4138
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Data sparsification by recursive skeletonization. At each level, the sur-
viving skeletons are shown, colored by block index, with the total number
of skeletons remaining given by N;,.

Numerical results
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CPU times for solving the Helmholtz equation in various cases at low
frequency (v = 10 in 2D and w = 3.18 in 3D) using LAPACK/ATLAS,
FMM/GMRES, and recursive skeletonization; The precision was set to
e=10""in2D and e = 107% in 3D.

Multiple scattering

We show how our solver can be combined with fast iterative
methods to great effect by considering a multiple scattering
problem.

p
(A+k2)u:0 nR2\ |
1=1

with, e.g., Neumann (sound-hard) boundary conditions

d/ XA = 20

Real part %(u) of the pressure field in response to a vertical plane wave
for various multiple scattering geometries characterized by the separa-
tion distance d/\ in wavelengths.

Molecular electrostatics

Letting X be a molecular surface, a classical model for the
electrostatic potential ¢ is Poisson’s equation:

~V - [5 (gj) Vo (x)] = Z q;0 (LE — ZC@> ; (8)
1=1

We generated a molecular surface for a short segment of
DNA consisting of N = 19752 triangles and solved an inte-
gral equation for the induced polarization charge to precision
e=10""7.

0.000462
-0.000710
0.000959

The total solution time was ~ 592 s, with an inverse appli-
cation time of =~ 0.08 s, to be compared with ~ 27 s using
FMM/GMRES.

Conclusions

We have developed a multilevel matrix compresssion and so-
lution algorithm. The matrix structure required is fairly gen-
eral and relies only on the assumption that the matrix have
low-rank off-diagonal blocks. It is competitive with fast iter-
ative methods based on FMM/GMRES in both 2D and 3D,
provided that the kernel of the integral equation is not too
oscillatory.

A principal limitation of all current hierarchical direct solvers
Is the growth in skeleton size in 3D, which prohibits the
scheme from achieving optimal O(/N) complexity. New meth-
ods to curtail this growth are under development, at least for
non-oscillatory cases.

Finally, although all numerical results are reported here for
a single CPU core, the algorithm is naturally suited for HPC
systems.
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