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1. Motivation

Predictive modeling of complex physical systems, such as the climate sys-
tem, must capture the coupling of phenomena over an ever increasing range
of spatial and temporal scales. Data assimilation methodologies use infor-
mation from the model, observational data, and corresponding error statistics
to produce an improved model state (the analysis). With a steadily increas-
ing amount of data available for these systems, data assimilation is poised
to play a significant role in this predictive modeling.

In this work we explore two important aspects of data assimilation for these
challenging problems. First, we investigate the influence of the strength of
coupling between processes at different scales:

study the dynamics of a model two-scale system,

evaluate the effectiveness of the data assimilation,

discuss the impact on data requirements.

Next we consider the problem of assimilating large amounts of data effi-
ciently , and propose a new matrix-free implementation of the Ensemble
Kalman Filter (EnKF),

cost of the matrix-free EnKF algorithm scales linearly with the number of
observations being assimilated

numerical experiments show it is significantly faster than the popular EnKF
algorithm developed by Evensen [4].

2. Ensemble Data Assimilation for Strongly Coupled Systems

2.1 Two-Scale System
The Lorenz 96 two-scale model ([5]) is defined by the following system of
ordinary differential equations

dXk

dt
= −Xk−1 (Xk−2 −Xk+1)−Xk + F − hc

b

J∑
j=1

Yj,k k = 1, . . . , K

dYj,k
dt

= −cbYj+1,k (Yj+2,k − Yj−1,k)− cYj,k +
hc

b
Xk j = 1, . . . , J

The model is a coupling of two systems, each of which obeys a scaled variant
of the Lorenz 96 single system model.

There are K slow variables Xk, which are defined on a cyclic chain such
that Xk−K = Xk+K = Xk.

For each slow variable Xk there are J fast variables Yj,k associated with
Xk. The fast variables Yj,k, k = 1 are cyclic within k, so that Yj,k−K =
Yj,k+K = Yj,k, while in j we have Yj−J,k = Yj,k−1 and Yj+J,k = Yj,k+1.

The systems was designed to represent the dynamics of the coupling be-
tween two distinct variables.
The constant F is a forcing term, b determines the ratio of am-
plitude of slow and fast variables, c determines the decorrelation
timescales between fast and slow, and the coupling coefficient h de-
termines how strongly the slow variables drive the fast variables.
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Figure 1: Solution of Lorenz two-scale model at the final time for h = 1.0 (top
left), h = 2.0 (top right), h = 3.0 (bottom left), and h = 4.0 (bottom right). The
blue line for slow variables Xk, red line is fast variables Yj,k. The figures show
how the correlation of the signal between the slow and fast variables, which
is strong when h = 1.0, degrades as h becomes larger.
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Figure 2: Time distribution of the slow variables (left figures), fast variables
(middle figures), and average FFT energy of the slow variables (left figures)
of the Lorenz two-scale model for h = 1.0 (top) and h = 2.0 (bottom).

For our numerical experiments we have the following setup:
We have K = 40 slow variables Xk, where each slow variable is linked
to J = 10 fast variables Yj,k. This makes a total of 440 variables for the
system.

The forcing term is taken as F = 10, since this is well into the chaotic
regime, b = 10, and c = 10.

The coupling coefficient h is varied from h = 1.0 to h = 4.0.

A 4th order Runge-Kutta method was used for the time stepping, where
δt = 0.05. The time units were defined by Lorenz so that 0.05 units corre-
spond to 6 hours.

The initial condition is obtained from a 60 day simulation initialized with a
random state.
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Figure 3: Same as Figure 2 for h = 3.0 (top) and h = 4.0 (bottom).

Figure 2 and 3 show the time distributed solution of the slow variables (left

figures), fast variables (middle figures), and the average FFT energy of the
slow variables (left figures). For h = 1.0 there exist a oscillatory structure
in the solution, which will be reflected in the correlation between variables,
this structure is enhanced for h = 2.0. For h = 3.0 the structure is still
clearly visible, and for h = 4.0 the structure of the solution disappears.
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Figure 4: Auto-correlation of the first slow variable with the rest of the vari-
ables for h = 1.0 (top left), h = 2.0 (top right), h = 3.0 (bottom left), and h = 4.0
(bottom right).

2.2 Assimilation Experiments with Ensemble Transform

Kalman Filter
The ensemble transform Kalman filter (ETKF) was introduced by Bishop
et.al. [1] as an adaptive sampling method. It computes the correct ensem-
ble perturbations consistent with the error covariance matrix of the analysis.
More details can be found in [1].
The following setup is used in the ETKF assimilation experiments:

The assimilation was done within a twin-experiment framework, where ob-
servations are taken from a reference run.

An ensemble of 500 members was simulated for assimilation

Each ensemble member is initialized by perturbing the initial condition of
the reference run with white Gaussian noise.

The data assimilation is performed for a time window of 25 days, with
assimilation done every 6 hours.

At every assimilation time 20 observations from the slow variables Xk are
considered for each assimilation experiment.
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Figure 5: Error measure of the ETKF assimilation for the slow variables with
20 observations for h = 1.0 (top left), h = 2.0 (top right), h = 3.0 (bottom left),
and h = 4.0 (bottom right).

The root mean square error measure (reference minus analysis) is shown in
Figure 5 for slow variables. The assimilation for h = 1.0 does a reasonable
job, while with h = 2.0 the assimilation does a very good job at estimating
the reference solution. For h = 3.0 the error measure shows some oscillatory
behavior, where the assimilation appears to estimate the reference solution
reasonably well over some intervals, but is not always consistent. Finally, for
h = 4.0 we see that the assimilation degrades even further, and the refer-
ence solution is approximated with a higher degree of error than in previous
cases. The degradation of the assimilation might be caused by the dimin-
ishing correlation among the variables of the system, as shown in Figure
4.

2.3 Discussion

Strong coupling between variables of different time-scales can adversely
affect the accuracy of data assimilation methods.

The Lorenz two-scale model was chosen to study the effects of strong
coupling in data assimilation.

It was observed that the structure of the solution can break down with
strong coupling (Figures 2 3). Additionally, the correlation among the vari-
ables is diminished, as can be seen in Figure 4.

An ensemble-based data assimilation was performed for a strongly cou-
pled system, where it was found that the assimilation encounters difficulty
in converging to the correct model state (Figure 5).

The degradation of the assimilation might be attributed to the diminish
correlation among the variables of the system.

In a different experiment (not shown), all slow variables are observed and
assimilated. In this case the assimilation is able to recover the reference
state, but the uncertainty of the assimilated state remains high.

3. An Efficient Matrix-Free EnKF Algorithm

In the second part of this work we describe an efficient matrix-free imple-
mentation of the Ensemble Kalman Filter (EnKF) for the assimilation of large
data sets. We propose a matrix-free implementation of the EnKF where a
Sherman-Morrison solver that exploits the outer-product form of the matrix
is used. The cost of the resulting algorithm scales linearly in the number of
observations (data) being assimilated, as shown in the numerical results.

3.1 Ensemble Kalman Filter
The Ensemble Kalman Filter (EnKF) was introduced by Evensen [3] as a
Monte Carlo approximation to Kalman filtering, for non-linear models, and
has gained wide acceptance in data assimilation applications. The EnKF
uses an ensemble of model states to estimate the model covariance matrix,
necessary to compute the analysis in the Kalman filter equations.
The following notation will be used throughout this part:

n: dimension of model state variable

m: number of observations

N : number of ensemble members

For a vector of m measurements yo ∈ Rm and an ensemble of N forecast
xfi ∈ Rn, i = 1, . . . , N the EnKF analysis equation are given by:

xai = xfi + K
(
yoi −Hxfi

)
, i = 1, . . . , N (1)

K = PfHT
(
HPfHT + R

)−1
, (2)

where the matrix K ∈ Rn×m is referred to as the Kalman gain matrix;
Pf ∈ Rn×n is the forecast covariance matrix; R ∈ Rm×m is the observa-
tions covariance matrix; H ∈ Rm×n is the linear observation operator. The
vector yoi ∈ Rm is a perturbed observations vector.
In the EnKF the forecast error covariance matrix is obtained through the en-
semble of model forecast, using the relation

Pf =
1

N − 1

N∑
i=1

(
xfi − xf

)(
xfi − xf

)T
, (3)

where xf is the forecast ensemble average.

Typical techniques use SVD or Cholesky decomposition to deal with the
inverse matrix in K.

Evensen [4] developed an efficient EnKF algorithm based on SVD. Scales
linearly with m, nevertheless can become expensive for large m due to the
matrix multiplication operations.

Viable solution is to perform assimilation matrix-free.

3.2 A Matrix-Free Algorithm
Denoting the innovation matrix by

C =
(
HPfHT + R

)
, (4)

the analysis step (1)-(2) in EnKF can be rewritten as

Czi =
(
yoi −Hxfi

)
(5)

xai = xfi + PfHTzi (6)

Notice that using (3), the innovation matrix C can be expressed as a sum of
rank one perturbations to a non-singular matrix. Edigi and Maponni [2] de-
veloped an efficient matrix-free linear solver that exploits the particular form
of C, based on the Sherman-Morrison identity(

A + uvT
)−1

= A−1 − A−1uvTA−1

1 + vTA−1u
. (7)

Hence the complete Matrix-free assimilation consists of two main steps:

1. Solve the linear system (5) involving the innovation matrix for each en-
semble member using the matrix-free Sherman-Morrison linear solver.

2. Update the forecast with equation (6) to obtain the analysis.

The cost of the resulting matrix-free EnKF algorithm is linear in m and more
efficient than a matrix decomposition approach since it avoids all matrix op-
erations that are computationally expensive.

3.3 Assimilation Experiments and Results
A global 2D shallow water (SW) model on a sphere is used for the numerical
experiments. Equations discretized using finite volume method type method,
with a time step ∆t = 450s.

Model describes hydrodynamic flow on a sphere assuming vertical motion
is much smaller than horizontal motion.

Assume fluid depth is small compared with radius of the sphere (radius of
Earth).

Computations done on a 2.5◦ × 2.5◦ grid.

xt0: trajectory produced by SW integration with an initial fluid depth defined
by

h0 (λ, θ) =
1

g

(
Φ̄ + 2Ωaϑ sin3(θ) cos(θ) sin(λ)

)
,

and initial velocities u0, v0 derived from the geostrophic relations.

Initial condition for the control run xb0 is taken from shifting xt0 one grid point
to the left.

Comparison of timing between our Matrix-Free EnKF and an SVD based
implementation from Evensen 2003.

Ensemble of size N = 100 model simulations was used, integrated up to
24h.

Ensemble I.C. generated by perturbing xb0 with a random vector sampled
from a normal distribution with mean zero.

A single assimilation is done at 6h or time step 48.

Varied the number of observations to assimilate from 200 to 3× 107.

Overhead of both methods are compared, as well as subsequent opera-
tions.
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Figure 6: Time distribution of the root mean square (rms) difference between
the reference solution and the ensemble average with assimilation. A single
EnKF assimilation of m = 30600 observations was performed at t = 6 hours
(time step 48). The left figure show the rms error for the fluid depth (h), the
middle for the zonal wind velocity field (u), and the left for the meridional wind
velocity field (v).
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Figure 7: Left figure: timing performance of the overhead or first part the
matrix-free implementation (blue line) and the SVD-based implementation
(red line). Right figure: Timing performance of the second part of the Matrix-
free implementation (blue line) and the SVD-based implementation (red line).
The CPU time is shown as a function of m, the number of observations being
assimilated, at t = 6 hours. Timing is in CPU seconds.

The matrix-free EnKF algorithm shows a clear advantage in computational
performance against the SVD-based EnKF algorithm.

The efficiency presented in the experiments is directly related to the num-
ber of observations m being assimilated by each algorithm. That is, the
matrix-free implementation can efficiently assimilate a large number of
observations in a fraction of the time of the SVD-based implementation.

4. Conclusions and Future Work

The accuracy of data assimilation may be adversely affected by strong
coupling in a multi-scale system. This may be due to the loss of structure
in the solution, as well as the diminishing correlation among variables of
the system.

An efficient matrix-free EnKF algorithm was presented, where the algo-
rithm compared favorably in computational performance against an SVD-
based EnKF algorithm.

A Parallel version of the matrix-free EnKF algorithm has been imple-
mented and preliminary results indicate a good scaling for the algorithm.

Future work for the matrix-free algorithm lies in developing an appropriate
inflation and localization techniques that take advantage of the computa-
tional efficiency of the algorithm.
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