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OBJECTIVES & CHALLENGES

e Develop UQ for coupled models in

e Develop multiscale quadrature rules.
Nuclear Reactor Technology.

e Adapt measure of approximation at Subproblem

every handshaking. g

Coupling
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e Mitigate mixing of wuncertainty at
handshaking.

PROBLEM DEFINITION

COUPLED NEUTRON TRANSPORT AND HEAT TRANSFER:
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Sample paths. Eigenvalues.

MEASURE TRANSFORMATION
NEUTRON-TRANSPORT PROBLEM:

e Solve the neutron problem to obtain ¢(§) = chq:o qaHa(§).

o Algorithmic UQ operations with respect to the probability distribution P of
1,825+, EN—1,&N:

— polynomial chaos H, (&) orthogonal with respect to P,
— quadrature rule {(§"), w(®)), 1 < k < r} for integration to Pe.

COUPLING REGION:
o Compute KL decomposition ¢(&) =g+ >, VAigini(§)-
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Joint Probability Density of
Interface Random Variables.
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Covariance

HEAT-TRANSFER PROBLEM:

e Solve the heat problem to obtain T'(n) = 1‘5 &|=0

TaHa(n).

o Algorithmic UQ operations with respect to the probability distribution P,
My.--ysMn-

of

— polynomial chaos Hg(n) orthogonal with respect to P,
— quadrature rule {(n®),%*)), 1 < k < 7} for integration to P,,.

e Typical benefits: (1) fewer polynomial chaos (2) fewer quadrature nodes.

COMPARISON OF SAMPLE PATHS OF SOLUTION
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Elementary Implemen-
tation
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Implementation  with
Dimension Reduction

80 20 100

ORTHOGONAL POLYNOMIALS WITH RESPECT TO 7

Gram-Schmidt procedure using P,, as measure: variables:

MULTISCALE QUADRATURE
Given, explicit dependence of 7 on &, find efficient quadrature for:
I(f)= [ f(n)dP,, neR” £€cRY N>>n
R™
IN FINE SCALE DESCRIPTION: Quadrature in RY
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Quadrature points relative to initial measure.
IN COARSE SCALE:
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Quadrature points and weights relative to adapted measure.
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