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Objectives
• Fast and Adaptive Solvers

– Computational Chemistry (e.g. Hartree-Fock, 
Density Functional Theory, Schrodinger’s eqn)

– Materials, fluids, electricity and magnetism
• Scaling of computational cost  with size
• General approach

– Readily accessible by students in sciences and 
mathematics

– More accessible than current computational 
chemistry code

– Focus on integro-differential equations

Distinguishing Features
• Multiwavelet bases

– Disjoint support and discontinuous basis maintains 
high-order convergence up to singularities and 
complex boundary conditions

• Non-standard form of operators and functions
– Fully adaptive local representation
– Operators are easy to compute and fast to apply

• Integral operator formulation
– Operators are bounded
– O(N log ε ) and with rapid convergence

• Separated form of operators
– Adaptive representation for each function and operator

Multiwavelet Basis
• A discontinuous orthonormal basis to span wavelets

• Using Alpert’s and interpolating basis
• Vanishing moments

– Since Wn is orthogonal to Vn the first k moments of 
functions in Wn vanish, i.e., 

• Sparse representations of many physically important 
kernels (e.g. Poisson, Hilbert, Helmholtz, …)
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Scaling Function Basis
• Divide domain into 2n pieces (level n)

– Adaptive sub-division (local refinement)
– lth sub-interval [l*2-n,(l+1)*2-n] l=0,…,n-1

• In each sub-interval define a polynomial basis
– First k Legendre polynomials
– Orthonormal, disjoint support
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Adaptive Refinement
• Adaptive truncation of multiwavelet coefficients 

to satisfy accuracy condition
• Refinement is given by scaling relationships of 

scaling functions and multiwavelets
• Unequally spaced dyadic subdivision also 

developed
• Interoperability with low-separation rank 

approximation
• On the right, 2-D slice of a 3-D potential function 

and a 3-D sign-function with spherical support

MADNESS is a framework for 
fast computation with guaranteed 
precision using adaptive pseudo-
spectral methods and discontinuous 
bases on high performance computers. 
Initial application is to determine the 
electronic structures of molecules,  
and nuclear structures. The methods 
are widely applicable.   We compute 
in 1-6 D and higher dimensions using 
combinations of multi-resolution and 
separated representations of functions 
and operators.
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Future
• Better and faster way of handling 
multiparticles, spin-orbit, relativistic terms, 
Dirac equation, time-dependent DFT and 
Fokker-Planck equations.

• Explore new algorithms for reducing the 
number of terms in the separated 
representation, other representations and GPUs

• Application to non-convolution based 
operators

• Better separated representation using 
exponentials and Gaussians for Green’s 
function and spectral projector

• Handling additional problems (e.g. spin orbit, 
Dirac, …)

• Time-dependent problems.

Application to Chemistry and 
Nuclear Physics

• Density Functional Theory (DFT)
– Kohn-Sham
– Practical approach to DFT, parametrizing

the density with orbitals (easier treatment of 
kinetic energy)

– Similar computationally to Hartree-Fock, 
but potentially exact
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Dynamics of H2+ in Laser

4-D, 3 electron with internuclear coordinates
First simulation with quantum nuclei and non-colinear field

Integral Formulation for 
Schrodinger Equation
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• E lim in ate n eed fo r deriv at ive o p erato rs an d p o ssibly  h igh  
n o rm  an d co n dit io n al n um bers

• Co n v erge usin g n o n lin ear fun ctio nal fix ed p o in t it eratio n 
h as been  dev elo p ed (2 0 1 1) fo r 

Scaling with System Size Cray XT5
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Singularities are of hyper-plane type

The image is the flux field in a 2-D slice of a 3D simulation of 
the hydrogen molecular ion in an atto-second laser pulse.

Fokker-Planck—Stochastic PDE describing the 
evolution of particle distribution.  For Brownian 
motion without forcing, we have in 6-d, in r, u, t

Quantum Monte Carlo calculations
Choose u to eliminate singularity at r12=0
Best to eliminate all hyperplanes r1=r2=0 and r1 
– r2=0 with a similiar tranformation.
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With Green’s function (a la Chandrasekhar)
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