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— Similar computationally to Hartree-Fock,

and nuclear structures The methods » Functions ¢/ are determined adaptively to . with but potentially exact
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. . T Integral Formulation for
separated representations of functions Application to Fast Computations : Schrodinger Equation
‘ ' and operators.
. | . * Representation by Gaussians works for convolution - (_ 207 V) v
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« Converge using nonlinear functional fixed pointiteration the hydrogen molecular ion in an atto-second laser pulse.

ObJ ectives DlStlngUI Shing Features Error (log,-scale) of approximating the Poisson kernel from hasbeen developed (2011) for
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