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Summary A new dycore option within the Community
Earth System Model (CESM):

High-Order Methods Modeling Environment (HOMME) 

Research sponsored by the the Institute for Algorithms and Architectures, a joint Oak Ridge and Sandia National
Laboratories project and the DOE/BER SciDAC Project: A scalable and extensible Earth system model. HOMME 
development is funded as part of DOE’s Climate Change Prediction Program (CCPP) program at the National 
Center for Atmospheric Research (NCAR). 

Summary 

Spectral Element Spatial Discretization 

Spectral Transform Methods Finite Element Methods 

High order accuracy
High convergence rate

Geometric Flexibility
Minimal Communication

1. Domain: 6 cube faces mapped to the sphere and tiled into lat-lon elements
2. Within each element, variables are approximated by polynomial expansions
3. Communication is only needed at the element edges
4. Mesh refinement: add elements or increase order of spectral degree

Combines favorable aspects of two 
discretizations onto a cubed sphere grid 

The inclusion of new physics, chemistry, and grid refinement of the recently released Community Atmosphere Model (CAM5) 
creates new algorithmic challenges, including coupled nonlinear multiscale processes and enhanced scalability requirements. 
To maintain scalability and throughput, a number of climate models have been returning to first order accurate fully explicit 
methods developed several decades ago. However, finer model grids require a superlinear reduction in the time step size to 
account for the smaller spatial scale and increased multiscale interactions (Keyes et al., 2006).  It has been shown that spectral 
deferred correction (SDC) methods provide more accurate and efficient solutions for several multiscale applications (Dutt et al.,
2000). A hybrid version of SDC outlined below has been implemented into the shallow water version of the spectral element 
dycore of the spectral element version of CAM (CAM-HOMME). It works by subdividing one time-step with p grid points and 
iteratively improving the solution by a low-order method (Huang et al., 2006, Jia and Huang (2008)). With p Gauss-Legendre 
quadrature points and backward Euler’s method, the resulting SDC is of order 2p and A-/L-stable. Presently, this is referred
to as SDC, and with some extension, a Krylov deferred correction (KDC) method, and is based upon a either forward Euler 
(explicit) or backward Euler (fully implicit (FI)) solution method and is applied to the suite of shallow water test cases from 
Williamson et al. (1992). This method is summarized below, and results showing accuracy improvements are presented. 
Solutions of test cases using S/KDC applied to the shallow water equations (TC1 and TC6) highlight the ability to generate 
solutions with errors below the uncertainty of the benchmark solution. Eighth order accuracy is demonstrated, which allows 
very long simulations without accumulating error at the rate of current time discretization schemes. The current SDC solver 
implementation utilizes a Fortran interface package within the Trilinos project, which allows fully tested, optimized, and robust 
code with a suite of parameter options to be included a priori. 
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spectral deferred Krylov (SDC and KDC) method has demonstrated 2nd, 4th, 6th, and 8th order accuracy, 
depending on the value of temporal p refinement. It has been shown that simulations using the hybrid 
deferred correction method produce solutions that are more accurate than traditional methods even with 
much larger (~100x greater) time steps. These higher order schemes can prevent accumulating error terms 
that exist with lower order methods run for many time steps. Although short time integrations with low 
order accurate time integration schemes do not produce solutions that are visibly different than the results 
from simulations using hybrid SDC, it is shown that longer time integrations with first order accurate 
leapfrog, unlike hybrid SDC, diverge significantly from the true solution.

*Developed at NCAR as part of DOE’s Climate Chance Prediction Program (CCPP), HOMME has exhibited superior scalability and 
efficiency. The spectral element formulation as applied in HOMME locally conserves mass and energy (Taylor et. al, 2009).

LDRD

Hybrid Deferred Correction Method
Spectral and Krylov Method for high order time integration

Shallow Water: Test Case 6
Nonlinear barotropic vorticity equations on the sphere

Test case 6 solves the barotropic vorticity problem on a 
sphere (left) and exercises the full nonlinear equations. 
The problem in SWTC6 uses a smaller scale separation 
between advection and gravity waves. Thus, an implicit 
and/or S/KDC based method, because they can utilize 
larger time step sizes, can provide a greater efficiency 
benefit as compared to advection CFL limited methods. 
 

Shallow Water: Test Case 1
Specified velocities advect a height anomaly around the sphere
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Range of geop: -0.00791966 to 999.917 (null)
Range of column longitude: 0 to 359.766 degrees_east
Range of column latitude: -89.8207 to 89.8207 degrees_north
Current Model elapsed time: 0 days
File swtc1_lf_5yrs.nc
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Range of geop: 8000.14 to 10560.2 (null)
Range of column longitude: 0 to 359.531 degrees_east
Range of column latitude: -89.6416 to 89.6416 degrees_north
Current Model elapsed time: 14 days
File swtc6_lf_5yrs.nc
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Test case 1 is a simple test case of a Gaussian hump anomaly advected around a sphere 
using prescribed velocities. To assess error, SWTC1 provides an analytic solution from 
which to compare. We have used spatial discretizations of 96 elements with np=8 and 48
elements with np=4, both of which are fine enough to minimize spatial error and produce 
similar results. In the regional plots of the height field below, the top left and right pictures 
show the anomaly prescribed at the start of the simulation. After 12 days (1 rotation around 
the globe), the anomalies are displayed just below the initial condition for both integration 
methods and show that the explicit and KDC are able to reproduce the height anomaly 
quite well. This is the typical length of the SWTC1 simulation to assess the ability of the 
numerical method to maintain the anomaly for a reasonable period of time. In the plots 
below the 12 day integration, same the anomaly has been advected around the globe for 
912 days, or about 2.5 years. Although the KDC method is able to maintain the anomaly 
very closely, the explicit scheme is diffused in magnitude and location. Below these regional 
plots, the relative error of the methods is presented.  
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Range of column longitude: 0 to 359.766 degrees_east
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Current Model elapsed time: 0 days
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Anomaly after 12 days using 
explicit (left) and KDC (right)

Anomaly after 912 days using 
explicit (left) and KDC (right)

A time step convergence analysis was performed for 
SWTC6 for a suite of p Gauss-Legendre quadrature 
points, similar to a previous analysis of the FI 
method implemented in HOMME (Evans et al. 2010). 
Spectral order p=1,2,3,4 are presented and as 
predicted, demonstrate 2*p order accuracy. Eighth 
order accuracy is a new result for a spectrally 
discretized temporal integration scheme. Like 
SWTC1, the short time integration of the test cases 
do not produce significant differences in the temporal 
schemes. However over long time integrations, 
especially in circumstances where the model is not 
strongly forced, it is expected that errors due to low 
order schemes are reduced using higher order S/KDC 
schemes.
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Range of geop: 0 to 1000 (null)
Range of column longitude: 0 to 359.531 degrees_east
Range of column latitude: -89.6416 to 89.6416 degrees_north
Current Model elapsed time: 12 days
File swtc11.nc
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One way to view the utility of high order 
time integration is relative to spatial error. 

The plot to the left presents the L2 norm 
of error for simulations using JFNK and 

SDC with large time step sizes and 
leapfrog and SDC with small time step 
sizes over a range of resolutions. When 

the temporal error is relatively small, the 
4th order slope of the spatial error used 
in HOMME is evident. For a given time 
integration scheme, the temporal error 

will remain relatively constant with 
varying resolution. 8th order SDC with 

a 30 second time step produces temporal
 error below the spatial error down to 

fine scale simulations (221K points 
~1/2 degree spacing). Even with a 3600s

time step size, the SDC method 
produces error below the spatial error 
for most resolutions. Leapfrog with a 

30s time step also produces low error levels with a 30 second time step, but 
not as low as SDC with an hour long time step size. Also, because leapfrog is limited to 

small time steps, efficiency for long integrations will be limited. JFNK with a 3600s time 
step shows that temporal error is dominant for most reoslutions. Implicit methods are 

not time step limited, but if low order accuracy is used, accuracy may be a trade-off for 
efficiency. The next step of this research is to develop scalable preconditioners for SDC 

and assess efficiency for large time step and fine scale spatial configurations of HOMME. 

 

Explicit KDC 

The deferred correction (DC) technique provides a framework to facilitate
the construction of stable and efficient high-order methods. It works by first
subdividing one time-step using p points, forming and iteratively solving the
error equation on these p points with a low-order method, such as Euler’s.
With the choice of p Gauss-Legendre quadrature points, the DC is spectrally
accurate and of order 2p. With the backward Euler’s method, the DC is A-
and L-stable. Large time steps can be stably taken using DC methods while
maintaining accuracy; this is particularly advantageous when dealing with long-
time simulations.

The shallow water equation can be written most compactly as

∂ϕ

∂t
= F (ϕ),

or its equivalent modified Picard integral form

∂ϕ

∂t
= F


ϕ0 +

 t

0

∂ϕ

∂t
dt


.

To work with deferred correction, we define and regard ψ =
∂ϕ

∂t
as the unknown,

and rewrite this equation in error equation form

δ =

 t

0

[F (ϕ[0] + δ) − ψ[0]]dt,

where ψ[0] or ϕ[0] = ϕ0 +

 t

0

ψ[0]dt is a provisional approximate solution, and

δ = ϕ− ϕ[0] is defined as the error.
We subdivide one time-step into p steps according to the Gauss-Legendre

quadrature. Within one time-step, we solve the above error equation on the
intermediate p sub-time-steps, and accumulate the numerical solution to the
provisional approximate solution ψ[0] and iterate this procedure until the pre-
scribed tolerance for the error is reached and move on.

Solving the above error equation using Backward Euler’s method is simply

δm = δm−1 + ∆tm


F (tm, ϕ

[0]
m+1 + δm) − ψ

[0]
m+1


,m = 1..p

Spectral deferred correction (SDC) was originally introduced by Dutt, Green-
gard and Rokhlin and the Krylov deferred correction (KDC) by Huang, Jia and
Minion is an accelerated version which provides same accuracy with better sta-
bility and efficiency.
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JFNK (2nd order) − 3600s t.s.
SDC (8th order) − 3600s t.s.
Leapfrog − 30s t.s.
SDC − 30s t.s.


