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Abstract model problem

Original abstract problem:

/

minimize J(y,u) = %”y — deQLz(Q) + R(u,y),

§ subj.to uweUyCU yeY,y CY =L*Q), (1)

e(y,u) =0.

\

e U, ;andY, ; — sets of admissible controls resp. states (convex, closed, non-empty).
oEX.Upy={uclU  usu<u},YVy,y={yecY : y<y <7y}

e Equality constraint is a well-posed PDE:
forall w € U there is a unique € Y (depending continuously an), so that

e(y,u) =0, K(u) dd Y .

Reduced problem:if vy, =Y

minimize J(u) = §|1K (u) = yal3 ) + 1Lul?, 2
subj.to uweU,y CU, L=1orV.
Background: linear PDE, no control constraints
e AssumeXK is a linear smoothing operator (e.g., solution operator of elliptic PDE).
e Discretization of problem (2) is equivalent to the regularized normal equations
GruC (B + K)* - K Ju= K\ m,ya.
e Two-grid preconditioner:
T}, = Gopmop + B — ) - (3)
Theorem 1 (Draganescu, Dupont 2004)For /. sufficiently small and. € V},
ne (1), u) hP
1 -C—=< <1+ C—,
8 = ((Gp)lu,u) 6
wherep is the order of the discrete method.
A. Semi-linear elliptic PDE, no control constraints
Optimal control problem:
minimize 3|y — yal” + Ful’, ”
subj. to —Ay+ oy’ =u, ue L),

e { Is twice differentiable=- use Newton’s method — mesh independent number of iterations:
Upt1 = up — Hessiam 'gradient

e Grid-sequencingised to obtain good initial guess.
¢ Adjoint methodsised to obtain gradients and the Hessian-vector multiplication:

Linearization : L = L(u) = —A 4 3y*(u) ,

Gradient : Vud(w) = (L y(u) —yy) + Bu,
Hessian : Gu)  =(L*) 11 —-6K(wQu) L™l +4I
where : Qu) = (L*) (K (u) — yg) -

e Proposed two grid preconditioner:

Ty, = Gy (mopu)moy, + B — myp,) -

Theorem 2 (Draganescu, Saraswat 20110n a quasi-uniform mesh and under usual elliptic regu-

larity assumptions
(G (w) = Ty ()] < Cho], Yo e LA(9Q),

with C' independent of.

Numerical results:

e Approximation ordeO(4?) confirmed by “in-vitro” experiments.

e Two-dimensional, “in-vivo” experimentsy = 1, 5 = 10~%;
showing: no.7;,-PCG iterations (no. unpreconditioned CG iterations):

iterate N | 16 32 64 128
1 7(12)6(12)4(12) 4 (12)
2 7(11)5(11)4(11) 4 (11)
3 4(5) 13(5) 2(6) 1(6)

B. Linear elliptic PDE, box-constraints on controls

Discrete optimal control problem: If U,;, = {u € U : u <u <u}in(2), solve

1
MK —yaul? + 5ul?

minimize (5)
subj.to v eV, u,(P) <u(P)<u,(P), Vnode P,

where discrete norms have diagonal mass matrices (mass-lumping).

[ UMBC
Department o

MATHEMATICS & STATISTICS

Optimization algorithms (outer iteration):

e Interior point methods (IPM), semi-smooth Newton methods (active-set type strategies).
e Each requires solving one/two linear systems at each outer iteration.

B 1. Interior point methods

e At each outer iteration we hadé, V diagonal, positive; assume didd( 1 V) represents a relatively
smooth functionh.

e Need to invert matrices of the form:

(01 +y—1\§+KTK> = (DgA+K'K)= A7 [+ AKTKA) A, A= D /5

Dy ox G=G),

whereD,, Is the multiplication operator with the functign(or a diagonal matrix with diagonal).
e Define preconditioner fofr;, as in (3) withg = 1.

Theorem 3 (Draganescu, Petra 20100n a uniform grid, ifA;, = interpolateg\),

_ 1
p(I =T, 'Gy) S CRP(B+A) 2|y .

Numerical results:

e Approximation ordeO(1?) confirmed by “in-vitro” experiments.
e Tested with linear 2D-elliptic, 1D parabolic PDEs.
e Below: results with initial value control of parabolic PDf, is the end-time state.
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B 2. Semi-smooth Newton methods (SSNM)

e The SSNM produces a sequence of sets, 7;.),.—; o . that approximate the exact active/inactive
sets(A, 7).

e The reduced system at each SSNM iteration has the form

GIU_I d:ef (ﬁI + KTK)IIHI = b7 .

whereZ is the current guess at the inactive set.
e Similar preconditioning as in (3); challenge is to find a coarse spacec V, <.

T, = B(I — 1) + Gyt t

Theorem 4 (Draganescu 2011)On a uniform mesh
p(I-T,7'G,)<cp! (h2 + ,Uhm> : (6)

wherey;, ™ is the Lebesgue measure of the 8gt, ", denoting the numerical boundary the inactive
domain relative to the coarse grid .

e Preconditioner is expected to be of suboptimal quality:

1 1
,0(] _Th Gh) < Chz.

C. Stokes control

Optimal control problem constrained by the Stokes system:

( .. . = = = =
minimize | — i|” + $p — pal”* + 511 = fol°

subj. to —VvAT+Vp=Tf, (7)

_/\

divii=0, @lg=0

\

e Hessian of reduced functional (matrix of reduced KKT system):
Gy, = BI + U, Uy, +4p P Py

whereU,,, P, are the solution operators (velocity resp. pressure as function of force).
e The proposed two-grid preconditioner is defined as in (3).

Theorem 5 (Draganescu, Soane 2011lf standard finite element approximations

(U = U)(HI < CRPIfLL 1P = Pr)(H)] < ChY|f]

hold, and under standard regularity assumptions,

B C
p(I —T),7'G)) < 3 (yuh? 4+ yph9) |

with C' independent of, 5, provided the coarsest grid is sufficiently fine.



