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Stochasticity plays an important role in many phenomena

• In stochastic reaction networks, intrinsic stochasticity is due to reac-
tions between small number of molecules

• Applications

• Gene regulatory networks, bioenergy and bioremediation

• Interfacial reaction processes, fuel cells and batteries

• Cellular signaling, immunology

• Uncertainty sources include intrinsic stochasticity, parametric
uncertainty, sparsity of the available data, experimental noise.

• Questions that uncertainty quantification helps to answer

• How predictive is the model?

• If the model is good enough, what is the mismatch with ex-
periments due to?

• Does the system work in spite of the noise or because of it?

Problem formulation

• Stochastic model Y (λ) with a d-dimensional input param-
eter vector λ = (λ1, . . . , λd)

• Observable of interest y = E[Y ]

• Training runs at M input parameter values

• Rm replica runs for m-th input parameter

• A total of N =
∑M

m=1 Rm model evaluations, {zm,r} -1 -0.5 0 0.5 1
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Polynomial chaos spectral representation

To build a representation for input-output
relationship, Polynomial Chaos (PC) spec-
tral expansions are used; see Ghanem and
Spanos, “Stochastic Finite Elements: A Spec-
tral Approach”,1991.

• Interprets input parameters as random
variables

• Allows propagation of input parameter
uncertainties to outputs of interest

• Serves as a computationally inexpen-
sive surrogate for calibration or opti-
mization

Input parameters are represented via their cumulative distribu-
tion function (CDF)

ηi = 2Fλi
(λi) − 1, for i = 1, 2, . . . , d.

If input parameters are uniform λi ∼ Uniform[ai, bi], then

ηi =
2

bi − ai

(

λi −
ai + bi

2

)

.

Output is represented with respect to Legendre polynomials

y(η) ≈ yc(η) ≡
K∑

k=0

ckΨk(η).

Sparse quadrature intergation fails with noisy data

Using orthogonality of the basis functions

〈Ψi(η)Ψj(η)〉 = δij〈Ψi(η)2〉,

one can compute PC modes via projection

ck =
〈yΨk(η)〉
〈Ψ2

k(η)〉 =
1

2d〈Ψ2
k(η)〉

∫

[−1,1]d
y(η)Ψk(η)dη

Monte-Carlo estimation of the above integral con-
verges slowly.

Quadrature approaches fail as well.

Q
∑

q=1

yqΨk(ηq)wq

• Tensor product quadrature suffers from the curse of
dimensionality

• Sparse grid quadrature is infeasible for noisy systems
due to negative weights. Even a very small error in
function evaluation is amplified by a factor that in-
creases with dimensionality!

Bayesian inference of PC modes

Bayesian framework allows quantifying different
sources of uncertainties - parametric, intrinsic, or
uncertainties associated with lack-of-sampling.

Bayes formula

p(c|D) ∝ LD(c)p(c)

relates prior distribution p(c) of PC modes to the
posterior p(c|D), where the data D is the set of all
training runs {zm,r}, m = 1 : M , r = 1 : Rm.

Estimates of the mean of the data zm,r and its variance at
the m-th parameter location are, respectively,

ym =
1

Rm

Rm∑

r=1

zm,r,

s2
m =

1

Rm − 1

Rm∑

r=1

(zm,r − ym)2.

Prior distribution on c is uniform, p(c) = const.

The likelihood accounts for the discrepancy between the averaged data and the model,

LD(c) = LD(c; s2) =
1

(2π)M/2
∏M

m=1(sm/
√

Rm)
exp

(

−
M∑

m=1

(ym − yc(ηm))2

2s2
m/Rm

)

The posterior is analytically tractable, it is a multivariate normal distribution,

c ∈ MVN ((ΨT Q−1
Ψ)−1

Ψ
T Q−1y

︸ ︷︷ ︸

mean

, (ΨT Q−1
Ψ)−1

︸ ︷︷ ︸

covariance

),

where Ψ is a M × (K + 1) matrix with elements Ψmk = Ψk(ηm) and Q is a diagonal weight matrix with entries
Qmm′ = δm,m′Rm/(2s2

m).

Mixture PC expansion based on nearest neighbor classification

• If data has quantitatively different behavior in different regions, global polynomial fit is inaccurate

• A mixture PC formulation is developed based on a nearest neighbor classification

– The input set of points is clustered according to the corresponding output values

– For each cluster, a separate PC expansion is obtained

– The resulting expansion is a weighted sum of PC expansions for a certain number of nearest neighbors

• If the output values are bounded, a map to (−∞; +∞) is utilized before PC representation to keep the approxi-
mation from exceeding physical bounds

– For example, if y ∈ [0, 1], the effective output is ỹ = log y
1−y

Sargsyan et al., ”Multiparameter spectral representation of noise-induced competence in Bacillus Subtilis”,
to be submitted to Biophys J, 2011.

Bacillus Subtilis is a gram positive soil bacterium

• Competence in B. Subtilis is a state that allows uptake of external DNA

• It is characterized by a sporadic jump in the number of comK molecules

• Stochastic reaction network of competence dynamics consists of 11 species
and 16 reactions, see Süel et al., Science, 2007

• Input parameters are reaction rate parameters in logarithmic scale,

η = log k̃ ± log f , i.e. the range is [k̃/f, k̃f ] with a range factor f > 1

and a nominal parameter value k̃.

Süel et al., Science, 2007 
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ODE limit and noise-induced transition to competence

• Competence events, i.e. sporadic jumps in the number of comK molecules, are driven by noise

• In the limit of large volume, the system is described by a system of ODEs, called rate equations

• By tuning reaction network parameters in a special way, one can keep the corresponding ODE limit unchanged,
focusing on pure noise dependence
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Small noise
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Large noise

Two-dimensional study

• An output observable is the fraction of time, in steady state, the system spends in competence,
i.e. Pc = P (X∞ > 5000). Note that Pc ∈ [0, 1] by definition, and the map log Pc

1−Pc

is employed

• Some regions in input space lead to a fully vegetative (Pc = 0) or a fully competent (Pc = 1) state

• Clustering approach fits a constant (0 or 1) in these trivial regions
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Contour plots of the probability of competence 4-th order mean response surface

Dimensionality reduction using sensitivity indices

• All 18 reaction rate parameters are taken

• Due to sparsity of the data (M = 1000 points in 18-dimensional parameter space) the global PC expansion is
more reliable than the clustering-based mixture PC

• Variance-based sensitivity indices Si =
Var[E(yc(η)|ηi)]

Var[yc(η)] are computed from the global PC to down-select from 18

dimensions to 6 dimensions

• The comK-related reaction parameters have shown larger sensitivity indices

• For the resulting 6-dimensional problem, a mixture PC is constructed and shown to be more accurate

• For each of the M = 1000 input parameters, Rm = 100 replica simulations are taken

• The resulting uncertain response surface has a relative L2 error of ∼ 0.08
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