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Ensemble methods for supervised machine learning have 
become popular due to their ability to accurately 
predict class labels with groups of simple “base learners.” 
Many ensemble methods are computationally efficient, 
but offer little insight into the structure of a dataset. We 
consider an ensemble technique that returns a model of 
ranked rules. The model accurately predicts class labels 
and has the advantage of indicating which parameter 
constraints are most useful for predicting those labels.  
An example is given with a dataset containing images of 
potential supernovas where the number of necessary 
features is reduced from 39 to 21.  	



We would like to thank Sean Peisert and Peter Nugent for their 
extremely valuable comments and suggestions.	


This research was supported in part by the Director, Office of 
Computational and Technology Research, Division of Mathematical, 
Information, and Computational Sciences of the U.S. Department of 
Energy, under contract number DE-AC02-05CH11231	



Rule Importance	



Calculation of Coefficients	



Application: Supernova	


Dataset is a collection of images 	


Positive labels indicate that the picture is of a supernova	


Dataset: 5,000 positive & 20,000 negative observations	


Training set: 2,500 positive & 2,500 negative observations 	


Testing set: all observations not in the training set	


10 cross validation tests	


	



Reduce 39 to 21 features	


Using the magnitude of a coefficient to indicate the importance of a 
rule, the rule ensemble method indicated that 21 out of the original 
39 attributes were more influential than the rest. Retraining and 
testing with the restricted set of attributes gave a lower overall 
error rate which indicates that the rule ensemble method 
successfully identified important attributes in the dataset.	



Problem Formulation	


Suppose we are given a dataset S ={xi, yi}i=1

N where the 
label yi is either +1 or -1 and xi is a vector (x1, … , xκ) of 
κ features. We want to predict which class and unlabeled 
observation x  came from.  	


	


We use the rule ensemble method developed by Friedman 
and Popescu (2003, 2004, 2005) to construct a function F
(x) such that sign(F(x)) predicts the true label y.	


 	


We assume F(x) is a linear combination of base learners fk 
	


	


and approximate the coefficients a by minimizing the risk 
of using F(x) on the sample of training data S.	


	


The l1lasso penalty is added to the minimization problem 
to make a sparse and prevent overfitting the training 
sample.  A sparse solution returns a model with fewer 
terms that is easier to interpret.  As a is a vector of 
weights for each rule, we can also interpret which rules 
and coefficients are most influential.	



Rules as Base Learners	


	


•  The Rule Ensemble Method uses rules 

rk(xi) as base learners fk(xi) 
•  Each rule is a node in a decision tree	


	


	


•  Rules define hypercubes in parameter 

space and evaluate to 1 if an 
observation is in that cube, i.e. an 
observation’s jth attribute abides by 
the rule’s constraint pj 	



•  Rules are diverse, quick to build, and 
allow interactions	



Using rules as terms was six times more 
accurate than only using features as linear terms, 
a classical multiple linear regression of the 
labels on the attributes.	



Fixed Point Continuation: 	


(Hale, Yin & Zhang 2007)	


Uses a shrinkage operator to 
approximate a by solving	


	


	


This problem is a reformulation of the 
l1-penalized regression problem. It 
uses the l2 norm for a loss function 
and the sparsity is controlled by μ > 0	



PATHBUILD: ���
(Friedman & Popescu 2004)	


Uses a constrained gradient descent 
method to approximate a by solving	


	


	


where L() is ramp loss error. Initializes 
all coefficients to zero and at each 
iteration updates only coefficients k 
that have large enough gradient 	


	


Constraint parameter τ is in [0, 1].	



Error rate increases as τ increases and restricts the 
number of coordinates that PATHBUILD advances 
in at each iteration. 

Error rate decreases when the weight on the 
risk is increased (µ increased). 

As µ is increases, a becomes less sparse and 
more terms are included in the model. The 
sparsity of the solution stops decreasing when 
µ is large. Here 78% of the coefficients are 
trivial when µ = 0.19. 

Solutions were generated at 13 different 
values of µ. Rules that received 13 votes 
were one of the 20 most influential rules for 
every value of µ tried. Only rules that 
received at least one vote are shown. The 
attributes used to compose these rules were 
used to find a smaller subset of attributes to 
train on. 

Preliminary tests used all 39 attributes in the 
dataset. Then new tests were run using a subset of 
21 attributes that the rule ensemble method had 
selected as being most influential. 

Motivation	




