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We use Gaussian processes to improve the efficiency with which an MCMC-like code explores a parameter space. Instead of integrating over the interior of the high-likelihood region of a theory, we attempt
to sample only points on the boundary of the 95% confidence limit region. We also use the theoretical uncertainty in Gaussian processes to monitor poorly-explored regions of parameter space and guard
against the possibility that there are multiple high-likelihood regions allowed by the theory. We test our data on the 7 year data release of the WMAP satellite, which measures the temperature fluctuations in
the cosmic microwave background. We compare our method to the results of the traditional Monte Carlo Markov chain code CosmoMC (Lewis and Bridle, 2002). We find that our code produces comparable
95% confidence limits on cosmological parameters while returning greater assurance that there are no points of interest in unexplored regions of the parameter space.
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