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Context and background - Auto- and cross-covariance functions r  One-dimensional numerical experiments

* The fit of two fields that are related through some functional (w/ and w/o considering it)
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= Gaussian process analysis of processes with multiple outputs is limited by the fact that far

. , , , , = Squared exponential function and the generated auto- and cross-covariance functions
fewer good classes of covariance functions exist compared with the scalar (single-output) case.

= \We explore models that appropriately account for the major features in the data, such as

physical and nonstationarity characteristics. Koo = Cov(y2, y2) K11 = Cov(yi,y1) Ko = Cov(yi, y2) I
squared exponential auto-covariance cross-covariance

= Models that incorporate such information are suitable when performing uncertainty 1 2

guantification or inferences on multidimensional processes with partially known relationships k(d) = 02 exp <_§€_2> st rad) independent fit S e b

dependent fit

among different variables, also known as co-kriging.
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= Covariance structure has a large impact on the uncertainty quantification and forecast PI e ( \ - _ , \

efficiency. 1 = of >
= Current techniques rely on local fitting of ad hoc statistical models and may not reveal a robust ‘ 1= %‘W - | 0
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52 l l " Independent fit of two GPs (grey) and dependent fit for two models. The dashed line represents
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Approach and theoretical considerations e P i P
o | represents the dependent fit.
= We introduce analytical and numerical auto-covariance and cross-covariance models that ?_ ll". *
are consistent with physical constraints or can incorporate automatically sensible assumptions ViV A Application: Two-dimensional co-kriging for geostrophic wind
about the process generating the data.
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= Process nonstationarity is addressed implicitly by the physical parameterization. 02 g € " Geostrophic wind: Ug = —Qy By Ug = Qv o~
= We determine high-order closures, which are required for nonlinear dependencies among fraswibid
the observables. = Auto- and cross-covariance functions can also be derived for nonlinear processes or
Matérn covariance kernels P
" These models are applied to Gaussian process regression for processes with multiple outputs §
and latent processes (i.e., processes that are not directly observed and predicted but K11 = Cov(y1, 1) =
interrelate the output quantities). 2% [ d i\ /3 N o V3w =
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Physical” processes under consideration: (v) LAY ' ~120 L_1oo oW _80
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Validation of the auto- and cross-covariance o
* Covariance models for explicit processes: , = Statistical 4 ~ mgy + M,, (£, 03)) 7 hyperparameters: ) = {/5, £, 03, 0‘%7 072%1, 02’2}
LEMMA 1. If two p7"06688652 y1 and Yo satisfy a physical constraint given = Model and sample-based auto- and cross-covariance functions: y1 = %w model; U=Ly,p+n, my=Lmg+m,, n~M,, 0727) ,
by y1 = g(y2) +n with g(-) € C*, and Cov(ys2,y2) = Koo, then the covariance 9
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PROPOSITION 1. Consider a process driven by the implicit separable sys- 2 0 ve il L (Luksp,x0) (Lo Ksgxp) Kipxp
tem (**). Then under the second-order closure assumptions the block covari- el TQ0ERRISS g Ee 10,000 sampies
ance matrixz elements satisfy the following simultaneous algebraic equations: . . . . " Predictive RMSE at Observations: 0.15% (East) U & V, and 0.25% (West) ¢
o Gaussian process regression with multiple outputs irebsaruad @tas: Calibration sample | Validation sample
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] = Consider the following process: ¥1 = g(y2) + 1
Exact model [yly2] | 2.20 | 1.85 | 3.23 || 2.20 | 2.00 | 2.98
In addition, gi?en Koo and if (I —L1y) s invertible, then for the reduced system = The joint distribution conf. Proposition 2 is approximated by Independent [y1] 4.08 | 3.37 - 2.94 | 3.09 -
(*), the following hold: (observational error) Independent [yly2] | 4.08 | 3.28 | 5.77 | 2.91 | 2.89 | 4.45
- ) o i Dependent [y1] 2.98 | 2.57 - 2.39 | 2.42 -
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L1 ((IT L11) (L;2K22 + K¢1,2)) Lis + L1a K22 Lyp+ Yx1 9(U=2) + 5tr(H Ky 42) _ predicted states [sub star] — | ()1 02,1 ] = Geopotential prediction: OK, TX region yields a better fit when using the physics-based model
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PROPOSITION 2. Consider a process driven by y1 = g(y2) +n. Then under £ 36} T -
the third-order closure assumptions, its covariance matrix takes the following 5 34l i : ] .50
form: * The predictive distribution is given by 32| —<— | —~— ) |
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where L is the Jacobian matriz, H is the Hessian tensor corresponding to g
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" Hyperparameters are obtained by maximizing the likelihood function:
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log(P (y[X.,8)) = =5 (v — m(X))" (i1 + )7 (y ~ m(X)) - ; log [Kuy + | — - log(2n) P PP

where K{, is the corresponding term using second-order closure assumptions.
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