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Contribution: Global Solver for Nonconvex QP
The combination of a finite branch-and-bound method and semidefinite relaxation, which is based on com-
pletely positive programming, results in a global optimization solver that is competetive with the state-of-
the-art global solvers and more robust.

Nonconvex QP

min
1

2
xTHx + fTx (QP)

s.t. Ax ≤ b

Aeq x = beq

l ≤ x ≤ u,

• H is not positive semidefinite, and (QP) is non-
convex and NP-hard.

• Assumption: feasible region is bounded.

• Many applications in science and engineering
including inventory theory, scheduling, robust
linear regression and so on.

• Frequently appears as sub-structure in more
complex optimization problems.

Comparison with State-of-the-Art Solvers
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Comparison with BurVan.

BurVan is an SDP based B&B code
for nonconvex QPs. Each square’s x-
and y-cordinate represents times for
our code and BurVan, repsectively.
Clearly, our code if faster than Bur-
Van.
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Comparison with Couenne.

Couenne is a modern general-
purpose global optimization solver.
Our code is significantly faster than
Couenne on BoxQP instances, but
slower on other type of instances.
However, our code is better in clos-
ing the gap on hard instances and uses
much less nodes than Couenne.

Finite B&B Method
Branch on Complementarity 
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The finite B&B method by Burer and Vandenbuss-
che (2008) works by enforcing the compelementarity
conditions through branching. Two major advan-
tages of this approach:

• The B&B tree is finite, unlike spatial branch-
ing (possibly infinite)

• Promotes stronger relaxations due to the in-
corporation of KKT conditions.
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Download
Source code is available at: www.mcs.anl.gov/~jieqchen/.

The solver can be called in MATLAB and used in YALMIP.

Third party sofware: CPLEX

Performance Profiles
For Globallib, RandQP and CUTEr instances, Couenne is faster than Quadprogbb on many of them but
could not solve as many instances as Quadprogbb. On BoxQP instances, Quadprogbb is clearly the

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000

C
um

ul
at

iv
e 

Pr
ob

ab
ilit

y

Factor

Quadprogbb
Couenne

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100

C
um

ul
at

iv
e 

Pr
ob

ab
ilit

y

Factor

Quadprogbb
BurVan

Couenne

winner among all the three methods: not only it is the fastest, but also it solved more hard instances. In
summary, Quadprogbb is competitive in terms of speed and more robust.Experiment Data
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Semidefinite Relaxations
Strong semidefinite relaxations derived from com-
pletely positive programming:

min
1

2
H •X + fTx

s.t. Ax = b

diag(AXAT ) = b ◦ b
Xij = 0 ∀ (i, j) ∈ E
(

1 xT

x X

)
� 0

(x,X) ≥ 0

Reformulation
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