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Integer programming solves the Labs difficult

discrete optimization problems.

Water, Road sensor placement, subway, build-

ing sensor management, Network interdic-

tion, Scheduling quantum EC, Protein struc-

ture, Peptide docking, Meshing, Space-filling

curves, Energy systems, Pantex planning, Ve-

hicle routing, Conference schedule.

Integer Program: Minimize a linear cost func-

tion subject to linear inequality and integral-

ity constraints.

minimize c · x
subject to

A · x ≥ b
x ∈ Zn.
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Recent focus on creating formulations of iden-

tified (tractible) problem structures.

Hardness arguments of modeling difficult struc-

tures.

Predict solution efficiency of a formulation.

Lockheed Martin Tech Refresh (Watson), im-

proved formulation changed solution times

from days to minutes.
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Find minimum cost 2-edge connected span-
ning subgraph.

Protect shipments against single failure.

Doubled edges are allowed and provided at a
discount.
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δ(S) := {e = {i, j} ∈ E : |S ∩ e| = 1},
E(S) := {e = {i, j} ∈ E : |S ∩ e| = 2} ∀S ⊂ V,
x(F ) :=

∑
e∈F xe ∀F ⊂ E.

A Classic 2-edge connected spanning sub-

graph problem.

xe ∈ {0,1,2} vars: Buy edge at price ce.

min c · x
subj to

x(δ(S)) ≥ 2 ∀S ⊂ V,
0 ≤ xe ≤ 2 ∀e ∈ E,
xe ∈ Z ∀e ∈ E.

Drop integrality constraints to get LP relax-

ation.
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Double-tree and Christofides heuristics

Select a minimum cost spanning tree T = (V,ET ).

The edge incidence vector:

χTe = 1 iff e ∈ ET else χTe = 0.

Double each e ∈ ET : 2χT is the multi-edge

incidence vector (has 2s) of our 2-edge con-

nected graph.

Take the set T odd of odd degree nodes of T .

A T odd-join is a graph M = (V,EM) such that

the degree of v ∈ V is odd iff v ∈ T odd.

Select a minimum cost T odd-join M .

χT +χM is the multi-edge incidence vector of a

connected, Eulerian, hence 2-edge connected

graph.
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Double-tree approximation

Let x∗ be optimal for LP relaxation.

x∗(δ(S)) ≥ 2 ∀S ⊂ V implies that x∗ satisfies

the partition inequalities for spanning trees.

Since x∗ satisfies the partition inequalities, x∗

dominates a convex combination of incidence

vectors of spanning trees:

x∗ ≥
∑
i λiχ

T,i, (
∑
i λi = 1).

Each tree can be doubled to get a 2-edge con-

nected graph:

2x∗ ≥
∑
i λi(2χT,i).

By averaging argument, one 2-edge connected

2χT,i costs at most that of 2x∗.
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Christofides approximation

x∗ dominates a convex combination of tree

vectors:

x∗ ≥
∑
i λiχ

T,i.

Let Ti be set of odd degree nodes for tree i.
1
2x
∗(δ(S)) ≥ 1 ∀S ⊂ V implies that 1

2x
∗ satis-

fies the Ti-join inequalities for each i.

Since 1
2x
∗ satisfies the Ti-join inequalities, 1

2x
∗

dominates a convex combination of Ti-join vec-

tors:
1
2x
∗ ≥

∑
j µijχ

M,ij, (
∑
j µij = 1).

For each i, j, χT,i + χM,ij is 2-edge connected.

3
2x
∗ ≥

∑
i
∑
j λiµij(χ

T,i + χM,ij).

By averaging argument, one 2-edge connected

χT,i + χM,ij costs at most that of 3
2x
∗.
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Our new 2-edge connected problem

xe ∈ {0,1,2} vars: Buy each edge at price ce,

ye ∈ {0,1} Buy doubled edge at a discount,

x⊕ y ∈ RE ×RE, c⊕ c′ ∈ RE ×RE(c′e ≤ 2ce).

min (c⊕ c′) · (x⊕ y)
subj to

x(δ(S)) + 2y(δ(S)) ≥ 2 ∀S ⊂ V
0 ≤ xe ≤ 2,0 ≤ ye ≤ 1 ∀e ∈ E
xe, ye ∈ Z.

Drop integrality constraints to get LP relax-

ation.

Integrality gap of 2: y∗e = 1
2 for edges of a

Hamilton (n edge) cycle. But optimal integer

solution is yopte = 1 for all but one edge of cycle.
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A better LP relaxation

Idea: xe+ye dominates a spanning tree vector,

denoted by ze. That is, x+y has enough mass

(n − 1 edges) to contain a spanning tree, and

the tree (z) has acyclic structure.

Add xe + ye ≥ ze z(E(V )) = n− 1,
∀S ⊂ V z(E(S)) ≤ |S| − 1.

Now y∗e = 1
2 on a Hamilton cycle no longer

feasible.

Worst gap seen is now 3
2 when horizontal edges

of a square have x∗e = 1 and a cost of 1 and

vertical edges of that square have y∗e = 1
2 and

a cost of 2.
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Let x∗⊕y∗ be an optimal extreme point solution

to our LP.

To keep things simple, assume x∗e = 0 or y∗e = 0

for each e ∈ E.

x∗e + y∗e ≥ z∗e and the spanning tree constaints

on z∗ imply that x∗ + y∗ dominates a convex

combination of incidence vectors χT,i of span-

ning trees x∗+ y∗ ≥
∑
i λiχ

T,i.

For each spanning tree, break up its set of

edges into a set of x-edges and a set of y-

edges. Then its incidence vector χT,i is broken

up into incidence vectors χT,x,i and χT,y,i.

So, χT,i = χT,x,i + χT,y,i. Thus,

x∗+ y∗ ≥
∑
i λi(χ

T,x,i + χT,y,i).

Finally, x∗ ⊕ y∗ ≥
∑
i λi(χ

T,x,i ⊕ χT,y,i).
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Double-tree approximation

Let x∗ ⊕ y∗ be optimal for LP relaxation.

x∗e + y∗e ≥ z∗e and the constaints on z∗ imply

that x∗ ⊕ y∗ dominates a convex combination

of incidence vectors of spanning trees in x⊕ y
variable space:

x∗ ⊕ y∗ ≥
∑
i λi(χ

T,x,i ⊕ χT,y,i).

The x-part of each tree can be doubled to get

a 2-edge connected graph:

2x∗ ⊕ y∗ ≥
∑
i λi(2χT,x,i ⊕ χT,y,i).

By averaging argument, one 2-edge connected

2χT,x,i ⊕ χT,y,i costs at most that of 2x∗ ⊕ y∗.
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Christofides approximation

x∗⊕y∗ dominates a convex combination of tree
vectors: x∗ ⊕ y∗ ≥

∑
i λi(χ

T,x,i ⊕ χT,y,i).

Let Ti be set of odd degree nodes for tree i.
1
2x
∗(δ(S)) + y∗(δ(S)) ≥ 1 ∀S ⊂ V implies that

1
2x
∗+ y∗ satisfies Ti-join inequalities for each i.

Since 1
2x
∗+ y∗ satisfies the Ti-join inequalities,

1
2x
∗ ⊕ y∗ dominates a convex combination of

Ti-join vectors:
1
2x
∗ ⊕ y∗ ≥

∑
j µij(χ

M,x,ij ⊕ χM,y,ij).

For each i, j, (χT,x,i+χM,x,ij)⊕(χT,y,i+χM,y,ij)
is 2-edge connected.

3
2x
∗⊕2y∗ ≥

∑
i
∑
j λiµij(χ

T,x,i+χM,x,ij)⊕(χT,y,i+
χM,y,ij).

By averaging argument, one 2-edge connected
(χT,x,i+χM,x,ij)⊕(χT,y,i+χM,y,ij) costs at most
that of 3

2x
∗ ⊕ 2y∗.
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The 5/3 approximation

From the Double-tree approximation, 2x∗ ⊕
y∗ dominates a convex combination of 2-edge

connected graphs G1
i .

From the Christofides approximation, 3
2x
∗ ⊕

2y∗ dominates a convex combination of 2-edge

connected graphs G2
i .

We can combine these as follows:

1
3 ( 2x∗ ⊕ y∗ ≥

∑
i λiG

1
i )

+ 2
3 ( 3

2x
∗ ⊕ 2y∗ ≥

∑
i λiG

2
i )

5
3x
∗ ⊕ 5

3y
∗ ≥

∑
i λiGi.

The 5
3 approximation and integrality gap fol-

lows since one of the Gis cost at most that of
5
3(x∗ ⊕ y∗) by our averaging argument.
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