A 2-edge-connected spanning subgraph prob-
lem: Robert Carr, Ojas Parekh, Sandia Labs

A

illustration from http://people.sc.fsu.edu/~jburkardt/latex/asa_
2011_graphs_homework/
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Integer programming solves the Labs difficult
discrete optimization problems.

Water, Road sensor placement, subway, build-
ing sensor management, Network interdic-
tion, Scheduling quantum EC, Protein struc-
ture, Peptide docking, Meshing, Space-filling
curves, Energy systems, Pantex planning, Ve-
hicle routing, Conference schedule.

Integer Program: Minimize a linear cost func-
tion subject to linear inequality and integral-
ity constraints.

Mminimize c-x
subject to
A-x>b
x e 7",



Recent focus on creating formulations of iden-
tified (tractible) problem structures.

Hardness arguments of modeling difficult struc-
tures.

Predict solution efficiency of a formulation.
Lockheed Martin Tech Refresh (Watson), im-

proved formulation changed solution times
from days to minutes.



Find minimum cost 2-edge connected span-
ning subgraph.

Protect shipments against single failure.

Doubled edges are allowed and provided at a
discount.



6(5) = {e={ijtec £ :[SNne[=1]},
E(S) = {e={i,jteFE :|Snel =2} VSCYV,
r(F) = YocrTe VF C E.

A Classic 2-edge connected spanning sub-
graph problem.

ze € {0,1,2} vars: Buy edge at price ce.

min c-x
subj to
x(6(S)) >2 VS CV,
O0<ze<2 VeekFE,
Te € 1 Ve € E.

Drop integrality constraints to get LP relax-
ation.



Double-tree and Christofides heuristics
Select a minimum cost spanning tree T = (V, ET).

The edge incidence vector:
xl =1iffee EL else x! =

Double each e € ET: 24! is the multi-edge
incidence vector (has 2s) of our 2-edge con-
nected graph.

Take the set 799 of odd degree nodes of T.

A T°%_join is a graph M = (V, EM) such that
the degree of v € V is odd iff v € T°%4,

Select a minimum cost T°%-join M.
xT—|—xM IS the multi-edge incidence vector of a

connected, Eulerian, hence 2-edge connected
graph.



Double-tree approximation
Let £* be optimal for LP relaxation.

2*(0(S)) > 2 VS CV implies that x* satisfies
the partition inequalities for spanning trees.

Since z* satisfies the partition inequalities, z*
dominates a convex combination of incidence
vectors of spanning trees:

¥ > St (i = 1).

Each tree can be doubled to get a 2-edge con-
nected graph:
2z* > ¥, M(2x ).

By averaging argument, one 2-edge connected
2v1t costs at most that of 2z*.



Christofides approximation

z* dominates a convex combination of tree
vectors:

x* Z Z’L )"iXT’Z'

Let 7; be set of odd degree nodes for tree .
%w*(cS(S)) >1 VS CV implies that %af;* satis-
fies the T;-join inequalities for each .

Since x* satisfies the Tj-join inequalities, 32*
dominates a convex combination of T;-join vec-
tors:

. y
sa* > Y w0V, () mij = 1).
For each i, 7, x1* + xM+4J is 2-edge connected.
Sa* > 50, 505 A (XD 4 X M),

By averaging argument, one 2-edge connected
X1+ xM costs at most that of Sa*.



Our new 2-edge connected problem

ze € {0,1,2} vars: Buy each edge at price ce,
ye € {0,1} Buy doubled edge at a discount,
r®yceREXRE capd e REXRE( < 2¢).

min (c®d) - (zdy)
subj to
z(6(S)) +2y(6(S)) 22 VSCV
0<2<2,0<ye <1 VeeFk
Te, Ye € 1.

Drop integrality constraints to get LP relax-
ation.

Integrality gap of 2: y} = % for edges of a
Hamilton (n edge) cycle. But optimal integer
solution is ySP* = 1 for all but one edge of cycle.



A better LP relaxation

Idea: z.+y. dominates a spanning tree vector,
denoted by z.. That is, x4y has enough mass
(n — 1 edges) to contain a spanning tree, and
the tree (z) has acyclic structure.

Add ze + ye > ze 2(E(V)) = n—1,
VS CV z(E(S)) < |5]—-1.

Now y* = % on a Hamilton cycle no longer
feasible.

Worst gap seen is now % when horizontal edges
of a square have z; = 1 and a cost of 1 and
vertical edges of that square have y} = 1 and

)
a cost of 2.
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Let x*dy™* be an optimal extreme point solution
to our LP.

To keep things simple, assume z; =0ory; =0
for each e € E.

x} + y> > 22 and the spanning tree constaints
on z* imply that «* 4+ y* dominates a convex
combination of incidence vectors 1 of span-
ning trees z* 4+ y* > 3. A\ix 17

For each spanning tree, break up its set of
edges into a set of x-edges and a set of y-
edges. Then its incidence vector x1+ is broken
up into incidence vectors 1'% and y1¥:t.

So, XT,Z' — XT,:E,Z' + XT,y,z'. Thus,
¥ + y* > Zz )\Z_(XT,m,i + XT,y,z').

Finally, * @ y* > 3 Mi(x1 %t @ x1v).
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Double-tree approximation
Let =* ¢ y* be optimal for LP relaxation.

x} + y2 > zF and the constaints on z* imply
that =* & y* dominates a convex combination
of incidence vectors of spanning trees in x ® y
variable space:

z* @ y* > Y (LT @ x YY),

The z-part of each tree can be doubled to get
a 2-edge connected graph:
2z* @ y* > Y (2x DO @ x ).

By averaging argument, one 2-edge connected
2Dt @ 1595t costs at most that of 2z2* @ y*.
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Christofides approximation

x*@dy* dominates a convex combination of tree
vectors: z* @ y* > 33 A (x DTt @ DY),

Let 7; be set of odd degree nodes for tree .
%x*(é(S)) +vy*(6(S)) >1 VS CV implies that

§az* + y* satisfies T;-join inequalities for each i.

Since %a?* + y* satisfies the T;-join inequalities,
%x* ¢® y* dominates a convex combination of

T;-join vectors:
1 o . o .
S @ y* > 55 i M @ XMy,

IS 2-edge connected.

%?\:4* ®2y* > 3 5 Ay (XD My @ (x T4
X )yﬂ’]).

By averaging argument, one 2-edge connected
(XTaan@_I_XMaCU/LJ)@(XTayaz+XMay7@J) costs at most
that of %a:* D 2y*.
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The 5/3 approximation

From the Double-tree approximation, 2z™ @
y* dominates a convex combination of 2-edge
connected graphs G}.

From the Christofides approximation, %x* D
2y* dominates a convex combination of 2-edge
connected graphs G?.

We can combine these as follows:

( 2z*@y* > NG
( 3z*@2y* > Y, NGP)

O] NOW)| =

_|_

> MGy

Wl
8
*
D
Wl
<
*
Vv

The % approximation and integrality gap fol-
lows since one of the G;s cost at most that of
2(z* @ y*) by our averaging argument.
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