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Motivation and DOE Relevance
Why bio or bio-inspired materials? Novel properties, e.g. har-
vest photons from the sun in a solar panel, deliver cargo and
mix fluid in microfluidic devices.

Self-organization: Collective swimming of bacteria increases
mixing rates of nutrients and oxygen, drastically reduces vis-
cosity of suspensions. Harvest and control the power of mi-
croorganism motion needed for development of hybrid biome-
chanical energy conversion systems.

Objective: Develop computational models that reveal self-
organization mechanisms behind collective swimming and
guide the design of biomaterials.

Key challenge: Computationally prohibitive fine scales.
Coarse-graining techniques for such systems need to be devel-
oped.

1. Dilute Bacterial Suspensions
Experiments (Aranson, ANL): suspensions of bacteria may
self-organize into collective swimming characterized by (i) in-
creased mixing rate and (ii) drastic reduction of effective vis-
cosity (E.V.)

Objective: Propose differential equation based models that
reveal self-organization mechanisms contributing to collective
swimming
Dilute suspension of swimming bacteria (bacteria interact with
ambient flow only) with two modes of motion (“motor boat
with random steering wheel"): self-propulsion and random
tumbling of strength D

Model: Self-propulsion – a point force, fpdδ(x − xf ), fp-
magnitude, d ∈ S2 -orientation vector, λ effective length of
flagellum. Bacterium modeled as a prolate spheroid in an infi-
nite Stokesian fluid with background flow uBG = [0, γx1, 0].
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Results: Asymptotic formula in the limit B → 0 (almost spher-
ical particles). E.V. obtained by averaging bulk stress over all
orientations

η̂ = η + φ
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B ∼ Bretherton const. 0/1 sphere/needle,D: magnitude of rot. diffusion,φ: concentr., γ: BG flow

Red: active addition to Einstein’s formula [1]. Mechanisms for
decrease: self-propulsion fp > 0, elongation B > 0, and tum-
bling D > 0

2. Semidilute: Add Interactions
Semi-dilute suspensions - the velocity field acting on each par-
ticle is sum of flows produced by all other particles u(xi) =P
j 6=i u

j(xi) [2].

Model: Bacterium modeled as point force dipole (verified ex-
perimentally K. Drescher et al.) with size and shape.

Size: Point dipoles close to each other cause artificial diver-
gence. Introduce excluded volume constraints, via truncated
L-J potential. Soft collisions: When particles are close the repul-
sive portion of the L-J potential slows each particle and pushes
them apart.

Shape: Shape parameter B enters the model via (3) (Jeffery
equations: (3) with no interactions).

h
The magnitude of the dipole moment |U0| = |F ||h| and shape
B remain constant as h→ 0
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(a) E. Coli - Food Poison Journal (b) Model of bacterium

Equations of Motion of N bacteria:

ẋi = V0d
i +

X
j 6=i

uj(xi) +
X
j 6=i

Lj(xi) + vBG (2)

ḋi = −di × [ωBG +
X
j 6=i

ωj(xi)] (3)

+ di ×Bdi × [EBG +
X
j 6=i

Ej(xi)] · di

V0 ∼ U0/η: swim speed, vBG, ωBG, EBG: velocity, vorticity, rate of
strain of BG flow

uj(xi) := û(xi − xj ,dj): flow on the ith bacterium due to
the jth - û: solution to a single bacterium problem with Lees-
Edwards boundary conditions.
Lj(xi) := L

`
xi − xj

´
: velocity due to Lennard-Jones interac-

tions.
ωj(xi) := ∇×uj(xi): vorticity due to flow from jth bacterium
Ej(xi) := 1

2

`
∇uj(xi) +∇[uj(xi)]T

´
: rate of strain due to jth

2. Semidilute: Numerical Results
Simulations (GPU): Experiment (Aranson):
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Dilute regime
(ö<2%)

Captures dilute trend of a sharp decrease in viscosity with in-
creasing concentration.

Qualitatively matches experimental results through full range
of concentrations (Φ ≤ 8%). When density is large see increase
in viscosity not captured by any previous analytical results.

Previous simulations only capture a much smaller number of
bacteria: this approach 100,000+.

2. Semidilute: Kinetic Theory
Mean field approximation: Using Law of Large Numbers: Sums
of interaction terms in (2)-(3) replaced by ensemble average (ex-
pectation) w.r.t. P (x,d)

P (x,d), the probability distribution for a bacterium to be at po-
sition x with orientation d, satisfies Liouville’s equation:

∂tP (x,d) = −∇x · (ẋP (x,d))−∇d · (ḋP (x,d)) (4)

Introduce angular distribution d = d(α, β):

Pd(d) :=
1

ρL3

Z
P (x,d)dx. (5)

ρ = N/L3: number density

For steady state (t→∞) obtain explicit asymptotic solution of
(4) as B → 0 (B = 0/1: sphere/needle)

Pd(α, β) ≈
1

4π
−

3B

8π(1 + ξ2)
sin2(β) [cos(2α) + ξ sin(2α)]

ξ =
16π2BU0ρε

25γ̇ , U0: dipole strength, ε: normalized variance of posi-
tional density.

For small concentration φ total stress σd(d) + σLJ (x) ≈
σd(d) → depends only on orientation and take average w.r.t.
Pd(d) to calculate the effective viscosity of a semidilute suspen-
sion (with interactions)

η̂ − η
η

=
σdxy

γ
=
−16π2B2U2

0 ρε

125γ̇2(1 + ξ2)
(6)

η: ambient fluid viscosity, γ: shear rate

SetD = − 8π2BU0ρε
25

to be the strength of rotational diffusion in
a dilute suspension with tumbling [1]. We find the same Pd →
same η̂.

Hydrodynamic interactions≈ random noise, called Self-Induced
Noise: interactions introduce randomness, without any explicit
stochasticity in the model

Decrease in (6) is due to: self-propulsion (U0 6= 0), elongation
(B 6= 0), and interactions

3.Current Work:Beyond Mean Field
Objective: Look for critical concentration φcrit where collective
motion (large scale structures) appears.

Model: Semidilute bacterial suspension of force dipoles in
3D. Approximate (2)-(3) by mean field with fluctuations ξx, ξd.

ẋi = V0d
i + 〈u(xi)〉+ 〈L(xi)〉+ ξx(x,d) (7)

ḋi = −di × 〈ω(xi)〉 − di ×Bdi × 〈E(xi)〉 · di + ξd(x,d) (8)

Key features: Collisions included via L and self-induced noise
included via ξx, ξd.

Goals:

• Numerically solve the equations of motion (2)-(3) on GPUs
using periodic boundary conditions in a 2D domain.

• Extract dependence of large scale motion as a function of sys-
tem parameters, e.g. dipole strength, bacterium velocity, con-
centration.

Velocity field where concentration doubles from a) to b). Large
scale structures, e.g. “vortices", arise in b).

a) b)

3.PDEs,many non-separated scales
PDEs with non-smooth coefficients & many scales:
Classical FEM and homogenization do not work.

Extend ideas from classical homogenization with periodic coef-
ficients to design multiscale shape functions (basis) that depend on
coefficients and capture scales with error estimate (10) ([3]).

Question: Is there an analog of the homogenization approxima-
tion for arbitrarily rough coefficients σ = {σij(x) ∈ L∞(Ω)},
with many non-separated scales?


−div(σ∇u) = g ∈ L2(Ω) x ∈ Ω
u = 0 x ∈ ∂Ω

(9)

Current work: Introduce computational mesoscale h. Construct
a finite dimensional approximation ûh with controlled error in
the H1-norm, bypassing the homogenized PDE (that does not
exists)

‖u− ûh‖H1 ≤ Ch‖f‖L2 . (10)

Next, extend this approach to Stokes eqn in the domain with a
fine-grained moving boundary that represents swimming bacte-
ria.

Objective: Avoid expensive recomputing of the basis at each
time step

Idea: Choose a clever (computationally inexpensive) advection
of the basis.
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