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Motivation and DOE Relevance

Why bio or bio-inspired materials? Novel properties, e.g. har-
vest photons from the sun in a solar panel, deliver cargo and
mix fluid in microfluidic devices.

Self-organization: Collective swimming of bacteria increases
mixing rates of nutrients and oxygen, drastically reduces vis-
cosity of suspensions. Harvest and control the power of mi-

croorganism motion needed for development of hybrid biome-
chanical energy conversion systems.

Objective: Develop computational models that reveal self-
organization mechanisms behind collective swimming and
guide the design of biomaterials.

Key challenge: Computationally prohibitive fine scales.
Coarse-graining techniques for such systems need to be devel-
oped.

1. Dilute Bacterial Suspensions

2. Semidilute: Add Interactions

Semi-dilute suspensions - the velocity field acting on each par-
ticle is sum of flows produced by all other particles u(x*) =

Zj;éz’ w (x*) [2].

Model: Bacterium modeled as point force dipole (verified ex-
perimentally K. Drescher et al.) with size and shape.

Size: Point dipoles close to each other cause artificial diver-
gence. Introduce excluded volume constraints, via truncated
L-J] potential. Soft collisions: When particles are close the repul-
sive portion of the L-J] potential slows each particle and pushes
them apart.

Shape: Shape parameter B enters the model via (3) (Jeffery
equations: (3) with no interactions).

Experiments (Aranson, ANL): suspensions of bacteria may
self-organize into collective swimming characterized by (i) in-
creased mixing rate and (ii) drastic reduction of effective vis-
cosity (E.V.)

Objective: Propose differential equation based models that
reveal self-organization mechanisms contributing to collective
swimming

Dilute suspension of swimming bacteria (bacteria interact with
ambient flow only) with two modes of motion (“motor boat
with random steering wheel"): self-propulsion and random
tumbling of strength D
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Model: Self-propulsion — a point force, fp,dd(x — x/), fp-
magnitude, d € S? -orientation vector, \ effective length of
flagellum. Bacterium modeled as a prolate spheroid in an infi-

nite Stokesian fluid with background flow u”?% = [0, yz1, 0].
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Results: Asymptotic formula in the limit B — 0 (almost spher-
ical particles). E.V. obtained by averaging bulk stress over all
orientations

N § B fpD 2 2
n=n+¢|on (36D2+72)B+0(B )]JrO(cb ). (D)

B ~ Bretherton const. 0/1 sphere/needle, D: magnitude of rot. diffusion, ¢: concentr., +v: BG flow

Red: active addition to Einstein’s formula [1]. Mechanisms for
decrease: self-propulsion f, > 0, elongation B > 0, and tum-
oling D > 0
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The magnitude of the dipole moment |Ugp| = |F'||h| and shape
B remain constantas h — 0
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Equations of Motion of N bacteria:

' =Vod' + ) uw!(x') + ) LI(x*)+vPC 2)
JFT J 7T

d'=—d' x W% + ) W (x")] (3)

J#i
+d’ x Bd* x [E®“ +» B/ (x")] - d*

J 7T
Vo ~ Uy /n: swim speed, vP<, wBC EBC: velocity, vorticity, rate of

strain of BG flow

A

u/ (x') = 6(x* — x?,d7): flow on the ith bacterium due to
the jth - G: solution to a single bacterium problem with Lees-
Edwards boundary conditions.

L’ (x") := L (x* — x7): velocity due to Lennard-Jones interac-
tions.

w’ (x?) := V x u/ (x*): vorticity due to flow from jth bacterium
EI(x") := 2 (Vu/ (x') + V[u’ (x')]1): rate of strain due to jth
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2. Semidilute: Numerical Results
Simulations (GPU):
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Experiment (Aranson):
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Captures dilute trend of a sharp decrease in viscosity with in-
creasing concentration.

Qualitatively matches experimental results through full range
of concentrations (® < 87%). When density is large see increase
in viscosity not captured by any previous analytical results.

Previous simulations only capture a much smaller number of
bacteria: this approach 100,000+.

2. Semidilute: Kinetic Theory

Mean field approximation: Using Law of Large Numbers: Sums
of interaction terms in (2)-(3) replaced by ensemble average (ex-
pectation) w.r.t. P(x,d)

P(x,d), the probability distribution for a bacterium to be at po-
sition x with orientation d, satisfies Liouville’s equation:

O:P(x,d) = —Vx - (xP(x,d)) — Vq - (dP(x,d)) (4)

Introduce angular distribution d = d(«, 3):

1
Py(d) := L /P(X,d)dx. ©)

p = N/L®: number density

For steady state (t — oo) obtain explicit asymptotic solution of
(4) as B — 0 (B =0/1: sphere/needle)

1 3B

Pjla,B)  — — sin? cos(2a) + & sin(2a
1(000) % o = g sin?(9) feos(2a) + sin(20)]
£ = 167T22§$0p =, Up: dipole strength, e: normalized variance of posi-

tional density.

For small concentration ¢ total stress c%(d) + o%/(x) =~
0c%(d) — depends only on orientation and take average w.r.t.
P,(d) to calculate the effective viscosity of a semidilute suspen-
sion (with interactions)

fl —n _ agy _ —167T2BQU02,0€ (6)

U v 12592(1 + &2)

n: ambient fluid viscosity, «y: shear rate
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Set D = — 7 g 5U 0PC to be the strength of rotational diffusion in
a dilute suspension with tumbling [1]. We find

Hydrodynamic interactions ~ random noise, called
: interactions introduce randomness, without any explicit
stochasticity in the model

3.Current Work:Beyond Mean Fielc

Objective: Look for critical concentration ¢.,;; where collective
motion (large scale structures) appears.

Model: Semidilute bacterial suspension of force dipoles in
3D. Approximate (2)-(3) by mean field with fluctuations &, &4.

X' = Vod' + (u(x")) + (L(x")) + £ (x, d) (7)
d’ = —d* x (w(x*)) —d’ x Bd® x (E(x")) -d* + £&4(x,d) (8)

Key features: Collisions included via L and self-induced noise
included via &, &4.

Goals:

e Numerically solve the equations of motion (2)-(3) on GPUs
using periodic boundary conditions in a 2D domain.

e Extract dependence of large scale motion as a function of sys-
tem parameters, e.g. dipole strength, bacterium velocity, con-
centration.

Velocity field where concentration doubles from a) to b). Large
scale structures, e.g. “vortices", arise in b).

3.PDEs,many non-separated scale

PDEs with non-smooth coefficients & many scales:
Classical FEM and homogenization do not work.

Extend ideas from classical homogenization with periodic coet-
ficients to design multiscale shape functions (basis) that depend on
coefficients and capture scales with error estimate (10) ([3]).

Question: Is there an analog of the homogenization approxima-
tion for arbitrarily rough coefficients o = {o;;(x) € L°°(2)},
with many non-separated scales?

x € ()
x € 0 )

u=20

{ —div(cVu) = g € L2(Q)

Current work: Introduce computational mesoscale h. Construct
a finite dimensional approximation 4y with controlled error in
the H!-norm, bypassing the homogenized PDE (that does not
exists)

lu —dnll g1 < Chlfl L2 (10)

Next, extend this approach to Stokes eqn in the domain with a
fine-grained moving boundary that represents swimming bacte-
ria.
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Objective: Avoid expensive recomputing of the basis at each
time step
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Decrease in (6) is due to: self-propulsion (Ugp # 0), elongation

(B + 0), and Idea: Choose a clever (computationally inexpensive) advection
0), and interactions

of the basis.




