Conditional Value-at-Risk Based Approaches to Robust Network Flow, **Connectivity and Design Problems**

Baski Balasundaram, Oklahoma State University Vladimir Boginski, University of Florida **Stan Uryasev, University of Florida** Sergiy Butenko, Texas A&M University

Project Summary

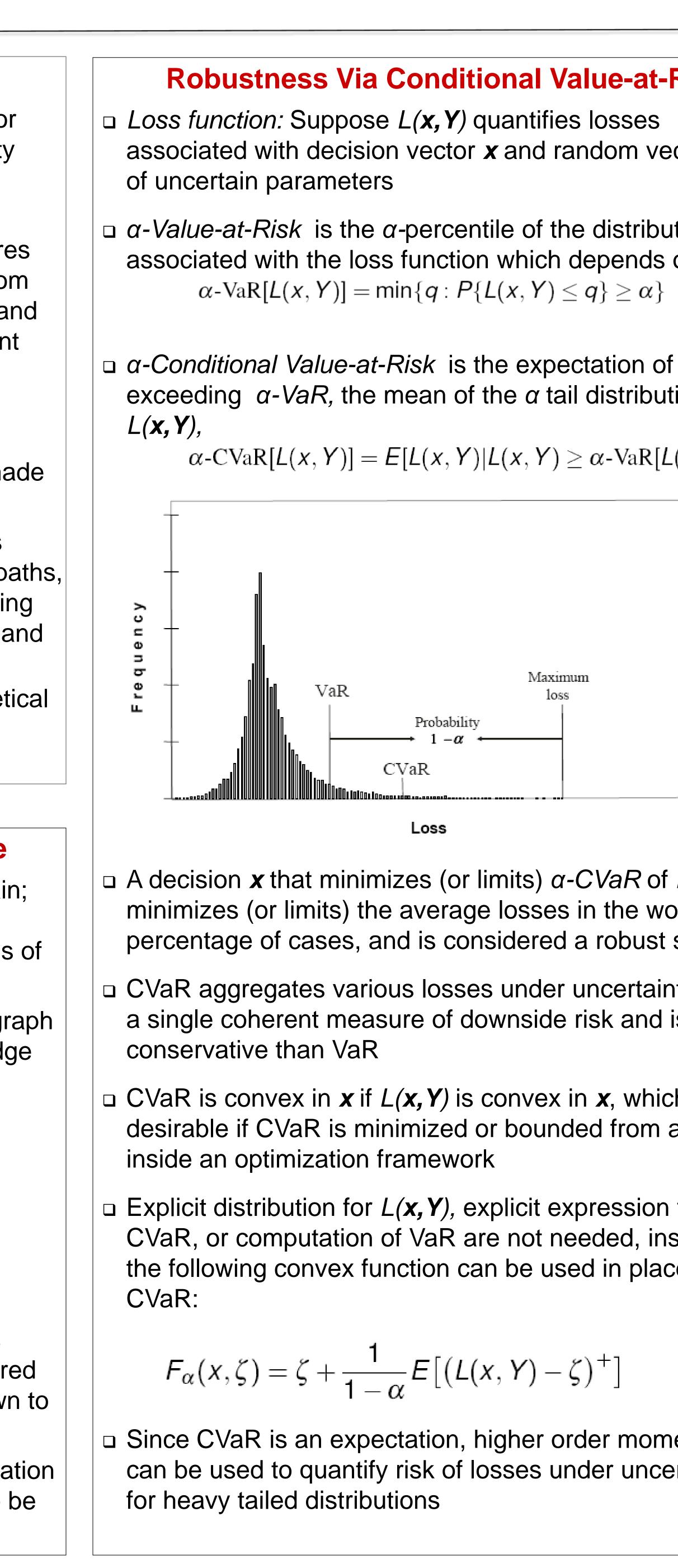
- **Objective:** Develop models and algorithms for network flow, network design, and connectivity problems under uncertainty with the aim of obtaining robust solutions to the problems
- Uncertainty: Probabilistic node and arc failures modeled using uniform random graphs, random graphs of given expected degree sequence, and other models based on preferential attachment
- **Robustness:** By bounding or minimizing the conditional value-at-risk (CVaR) of an appropriately designed loss function, which quantifies losses as a function of decisions made under uncertainty
- Problems investigated: Minimum cost flows (including its special cases such as shortest paths, maximum flows, circulation), minimum spanning *k*-cores, minimum spanning *r*-robust *k*-clubs, and critical node detection
- Research tasks: Model development; theoretical study and algorithm design; large-scale implementation, testing and validation

Uncertainty in the network structure

- Underlying network is assumed to be uncertain; We assume that an edge exists with some probability quantified by random graph models of given expected degree sequence
- Given a sequence $w = (w_1, \dots, w_n)$, a random graph G(w) is defined where the probability of an edge between *i*, $j \in V$ is given by:

$$p_{ij} = \frac{w_i w_j}{\sum_{k \in V} w_k}$$

- □ Erdos-Renyi random graph model G(n, p) is obtained from G(w) by choosing $w_i = np$
- \Box G(w) represents a power-law random graph model when sequence *w* obeys a power-law
- Power-law model is particularly interesting as network models of many natural and engineered complex systems have been empirically shown to exhibit power-law degree distributions
- Models of preferential attachment, and duplication models describing power-law graphs will also be investigated



-Risk	The Minimum Spanning k-Core Pr
ector Y ution on X	■ The proposed idea to employ CVaR to obtain a solutions to optimization problems can be illus a novel network design problem studied in this based on the concept of <i>k</i> -cores introduced by in 1983 for social network analysis Definition (Seidman, 1983) Given a simple undirected graph $G = (V, E)$, for $S \subseteq V$, the induct G[S] is called a <i>k</i> -core if the minimum degree in $G[S]$ is at least k
of losses ution of	 One can add edges to the network (design it) a results in a <i>k</i>-core; Appropriate choice of paraguarantee desired diameter and vertex connected leads to <i>the minimum spanning k</i>-core problem Definition Given V = {1,,n}, c_{ij} for each distinct i, j pair and a fixed integer k, identify a minimum cost set of edges E* to be created that the graph G = (V, E*) is a k-core.
	 □ The minimum spanning <i>k</i>-core problem is poly solvable using generalized graph matching ted □ Suppose edges have probabilities of survival/ hence a spanning <i>k</i>-core could cease being or edges we chose, failed; Consider the loss function L(x, Y) = ∑ (k - ∑ x_eY_e)⁺
f <i>L</i> (x , Y) orst 1-α t solution nty into is more	 v∈V e∈δ(v) which measures the cumulative degree deficies uncertainty where x_e is a binary variable indicator chosen to be included, and Y_e is an indicator revariable for edge <i>e</i> surviving □ The CVaR constrained minimum spanning <i>k</i>-c under uncertainty can be formulated as:
ch is above, n for istead	Formulation (CVaR constrained) $\min \sum_{e \in E} c_e x_e$ $\sum_{e \in \delta(v)} x_e \geq k, v \in V$ $\zeta + \frac{1}{1 - \alpha} \sum_{s=1}^{ \Omega } p_s [(L(x, y^s) - \zeta)^+] \leq C$ $\zeta \in \mathbb{R}$ $\chi_e \in \{0, 1\}, e \in E$
nents ertainty	 We expect to be able to develop a polynomial separation algorithms since the original proble polynomial time solvable; This is under investige CVaR formulations of min cost flow problem and algorithms have been developed; In this case, of samples needed to estimate CVaR to desire is polynomial in the number of arcs

