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INITIAL RESULTS
e Three implementations: Random search (RS), modified Nelder Mead (NM),

PROBLEM SPAPT TEST SUITE

Increasing complexity of modern computer architectures presents obstacles for e /2 problems from 18 serial scientific computation kernel codes

achieving high-performance of scientific codes. e A SPAPT problem = code + set of transformations + parameter specifications
Empirical tuning is an attractive approach for the performance quest. + constraints + input size (+ machine)

Model-based search (MBS)
e SPAPT problems

e 10 to 50 parameters with search space of 1e08 to 2e30 code configurations e Each evaluation consists of 35 runs; Objective: mean run time
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CONCLUSIONS

Search in performance tuning is a derivative-free optimization problem

Novel optimization algorithms offer potential to find high-quality contfigura-
tions in a short time

Problem characteristics can significantly impact the effectiveness
Algorithms need to exploit tuning problem characteristics
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MODELING AND FORMULATION

Mixed-integer, nonlinear optimization problem
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x: a parameterization of the code

e z7:integer parameters (cache tiling, unroll jam, . . .). Search space characterization
METHOD Customization of algorithms to handle contraints, binary parameters, and

cache misses
e x.: continuous parameters (tolerance for an iterative solver . . .). A straw-man trust region algorithm at iteration k: Developing parallel optimization algorithms

f(x): empirical performance metric of a code variant such as FLOPS, power, or run i Tuning communication avoidance and hiding kernels

time construct a quadratic model g
e noisy f(x): mean, median, ... minimize quadratic g, locally to find x.

e xp: binary parameters (multicore parallelization, compiler types, . . .).
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subject to constraints:

replace z. with the best neighbor point x, * = | N\ ACKNOWLED GMENTS

using q;, when z. is evaluated before A

e bound: unroll =[1...30], RT =11,8,32]. compute f(zc)

e known: RTT * RT; < 150 (cheap)
power consumption < 90 W (expensive).

e hidden: transformation errors (relatively cheap), compilation errors (expen-
sive), and run time errors (very expensive).
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