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Abstract
Parallel computation in a high performance computing environment can be char-
acterized by the distributed memory access patterns of the underlying algorithm.
During execution, networks of compute nodes exchange messages that indirectly
exhibit these access patterns. Identifying the algorithm underlying these observ-
able messages is the problem of latent class analysis over information flows in a
computational network. Towards this end, our work applies methods from graph
theory, network theory, and machine learning to classify parallel computations
solely from network communication patterns. Pattern classification has appli-
cations to several areas including anomaly detection, performance analysis, and
automated algorithm replacement.

Communication Patterns
Message Passing Interface (MPI) is a standard for distributed memory parallel
programs. Our data consists of 5 dimensional vectors of MPI communication
features:

[source, destination, call name, bytes sent, repeat count]

Scientific applications have highly structured MPI communications; these are
tied closely to their distributed memory access patterns.

Atmospheric Dynamics Linear Algebra

Molecular Dynamics Supernova Simulation

These patterns are often robust to changes in architecture and the number of
compute nodes, but may vary with different parameters or datasets.

Call Distributions
We first create empirical probability distributions of MPI calls made by each
node in two unknown parallel computations, then compare the distributions for
corresponding nodes. If some threshold of node pairs match, the computations
are deemed the same. We use the two-sample Kolmogorov-Smirnov (KS) test
to compare distributions, first computing the D-statistic for two empirical
cumulative distribution functions:

Dm,n = max
x

|Ŝm(x)− Ŝn(x)|

where m and n are the total event counts of their respective distributions. We
then compute the probability that differences in the distributions are due to
chance (the p-value) and treat the distributions as different if this value is less
than our threshold α:

P(Dm,n ≥ DO) < α

for the observed statistic DO.

Network Motifs
Another approach to characterizing communication topologies is to describe
global communication patterns in terms of their localized subgraphs. Those
subgraphs that occur more often than would be expected in randomized
networks are called motifs. Over-representation of a subgraph is determined by
its z-score:

z =
NO − NR

σ
where NO is its count in the original network, NR is its mean count in
randomized networks, and σ is the standard deviation from NR.

We create graphs from communication patterns where edges exist between
nodes that exchange messages; edges are “colored” with MPI features such as
the call name. Single color graphs assign all MPI calls to the same group,
while 2-color graphs distinguish between broadcast and point-to-point calls.
Lastly, 3-color graphs divide point-to-point calls into send and receive groups.
We identified 1-3 color motifs of size 3 and 1-2 color motifs of size 4:

Figure: Commonly found motifs of size 4 with 1 color (all calls) or 2 colors (broadcast/point-
to-point calls).

Machine Learning

Finally, we train several statistical models on our communication patterns and
evaluate them using a maximum likelihood framework on out-of-band samples.
These models include Hidden Markov Models, Näıve Bayes, Tree Augmented
Näıve Bayes, and Random Forests.

The former three are types of Bayesian networks that calculate the likelihood
of samples using a graph-based representation of dependencies between
communication features. In contrast, random forests are ensembles of decision
trees whose combined predictions are more accurate than individual trees.
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Tree Augmented Näıve Bayes
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Random Forests

Figure: ROC visualization of 14 classifiers using Tree Augmented Näıve Bayes and Random
Forests. The point (0, 1) corresponds to ideal classification.

These models achieve nearly ideal classification for 14 different parallel
programs. Each classifier was evaluated with 10-fold cross-validation to ensure
reported accuracy is not a result of over-fitting. These models outperform call-
and motif-based classifiers by 10-15%.
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