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In the simulation of kinetic systems, moment models are used to create numer-
ically tractable problems by simplifying the description of the state space and by
converting the problem to a naturally parallelizable form. Entropy-based moment
closures are moment models which retain fundamental properties of the underlying
kinetic equations such as hyperbolicity, entropy dissipation, and positivity but require
the solution of a constrained, strictly convex optimization problems at each point on
a space-time mesh.

The difficulty of this problem for certain moments has been the main obstacle to
wide-spread implementation of the method. In this work, we dig in to find out when
and why the optimization problem is difficult and address these difficulties.

Our Kinetic Model

For our tests, we model the migration of unit-speed particles that are absorbed by
or scattered isotropically off of a background material medium with slab geometry.
The particle system is characterized by the non-negative density F = F (x, µ, t) that
is governed by the kinetic equation

∂tF + µ∂xF + σtF =
σs

2
〈F 〉 , (1)

where 〈·〉 denotes integration over the angle variable µ ∈ [−1, 1].
The moments of F with respect to a vector of polynomials µ 7→ m(µ) ∈ RN+1

are given by 〈mF (x, ·, t)〉 =: u(x, t). The exact evolution of u(x, t) can be found
by multiplying (1) by m and integrating out µ to get

∂tu + ∂x〈µmF 〉 + σtu = σsQu . (2)

Entropy-based closures close the moment system by approximating F in (2) by an
ansatz which solves the constrained, strictly convex optimization problem

min
g
〈η(g)〉 subject to 〈mg〉 = u , (3)

where η(z) = z log z− z is the Maxwell-Boltzmann entropy. In our implementation,
we solve the unconstrained, finite-dimensional, strictly convex dual problem,

min
α∈RN+1

〈
exp(αTm)

〉
−αTu . (4)

We denote the solution to (4) by α̂(u). The ansatz which solves (3) has the form
Gα = exp(αTm). Substitution of Gα̂(u) for F in (2) gives the so-called MN models.

Addressing the Computational Difficulties

Maintaining realizability

• The optimizer and PDE solver must work together to ensure that the numerical
solution of (2) stays in the set of realizable moments.

Ü Our optimization enforces the stopping criterion

γ := exp

(
‖α̂− ᾱ‖max

µ
‖m‖

)
< 1 + ε . (5)

Ü Then with the time-step restriction

max{γ}∆t

∆x

2 + θ

2
+ σt∆t < 1 , (6)

the solution maintains realizability.

Accurate integration

• The integral in the objective function of the dual problem (4) must be evaluated
by quadrature.

• Near the realizable boundary, the ansatz Gα̂(u) approximates atomic
distributions—difficult for most quadrature rules!

Ü We implemented an adaptive quadrature.
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Iterative change of polynomial basis

• The Hessian of the dual objective function is given by H(α) =
〈
mmTGα

〉
.

• As u approaches the realizable boundary, the Hessian at the solution H(α̂(u))
approaches singularity.

Ü But in a different polynomial basis, the Hessian is identity:

H(α) =
〈
mmTGα

〉
= RT

〈
ppTGα

〉︸ ︷︷ ︸
=I

R . (7)

Because H is symmetric positive-definite, we use the Cholesky factorization
H = RTR to define the change of basis m = RTp.

Ü The change of basis may be poorly conditioned, so we approach it iteratively by
changing basis at every optimization iteration.

Regularization near the boundary of realizability

• For some problems, u is too close to the realizable boundary to be solved in finite
precision.

Ü We construct nearby tractable moments:

v(r) := (1− r)u + rQu , (8)

where Qu are the moments of the isotropic distribution with the same number
of particles.

Ü r ∈ (0, 1) should be chosen as small as possible. Typically, r ≤ 10−4.

Illustrations

The following figures display some quadrature and optimization details in a 400-cell
simulation of a two-beam instability using the M15 model.
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Conclusions

Our work has detailed the difficulties in solving optimization problems of the form
(4) and suggested practical ways to deal with these problems in concert with the nu-
merical solution of the moment model. With our proposed regularization technique,
our work has illustrated how to solve the problem up to the limit of finite precision.
Our future work will focus on improving the quadrature and incorporating our cur-
rent progress into partial-moment models, other entropy choices, and higher spatial
dimensions.
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