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Abstract

We develop a novel geometric multiresolution analysis for analyzing intrinsically
low dimensional point clouds in high-dimensional spaces, modeled as samples from
a d-dimensional set M (in particular, a manifold) embedded in R

D, in the regime
d � D. This type of situation has been recognized as important in various appli-
cations, such as the analysis of sounds, images, and gene arrays. In this paper we
construct data-dependent multiscale dictionaries that aim at efficient encoding and
manipulating of the data. Unlike existing constructions, our construction is fast,
and so are the algorithms that map data points to dictionary coefficients and vice
versa. In addition, data points have a guaranteed sparsity in terms of the dictionary.
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Introduction

Data sets are often modeled as point clouds in R
D, for D

large, but having some interesting low-dimensional structure,
for example that of a d-dimensional manifoldM, with d � D.
When M is simply a linear subspace, one may exploit this as-
sumption for encoding efficiently the data by projecting onto
a dictionary of d vectors in R

D (for example found by SVD),
at a cost (n + D)d for n data points. When M is nonlin-
ear, there are no “explicit” constructions of dictionaries that
achieve a similar efficiency: typically one uses either random
dictionaries, or dictionaries obtained by black-box optimiza-
tion. This type of situation has been recognized as important
in various applications, and has been at the center of much in-
vestigation in the applied mathematics and machine learning
communities during the past several years.
We formalize this approach by requesting to find a dictionary
Φ of size I , based on training data, such that every point (at
least from the training data set) may be represented, up to a
certain precision ε, by at most m elements of the dictionary.
This requirement of sparsity of the representation is very nat-
ural from the viewpoints of statistics, signal processing, and
interpretation of the representation. Of course, the smaller I
and m are, for a given ε, the better the dictionary.
Current constructions of these dictionaries such as K-SVD [1],
k-flats [5] and Bayesian methods [6] have several deficiencies.
First, they cast the requirements above as an optimization
problem, with many local minima, and for iterative algorithms
little is known about their computational complexity. Sec-
ond, no guarantees are provided about the size of I,m (as
a function of ε). Lastly, the dictionaries found in this way
are in general highly over-complete and unstructured. As a
consequence, there is no fast algorithm for computing the co-
efficients of a data point w.r.t. the dictionary, thus requiring
appropriate sparsity-seeking algorithms.
In this paper we construct data-dependent dictionaries based
on a geometric multiresolution analysis (GMRA) of the
data, inspired by multiscale techniques in geometric measure
theory [4]. These dictionaries are structured in a multiscale
fashion; the expansion of a data point on the dictionary ele-

ments is guaranteed to have a certain degree of sparsity m;
both the dictionary elements and the coefficients may be com-
puted by a fast algorithm; the growth of the number of dictio-
nary elements I as a function of ε is controlled theoretically,
and easy to estimate in practice. We call the elements of
these dictionaries geometric wavelets, since in some aspects
they generalize wavelets from vectors that analyze functions
to affine vectors that analyze point clouds.

Geometric Wavelets

Let (M, g) be a d-dimensional compact Riemannian mani-
fold isometrically embedded in R

D, with d � D. Assume we
have n samples drawn i.i.d. from M, according to the natu-
ral volume measure dvol on M. We use such training data
to present how to construct geometric wavelets, though our
construction easily extends to any point-cloud data, by using
locally adaptive dimensions dj,k (rather than a fixed d).
Multiscale decomposition. We start by construct-
ing a multiscale nested partition of M into dyadic cells
{Cj,k}k∈Γj,0≤j≤J that satisfy the usual properties of dyadic
cubes in R

D. There is a natural tree T associated to the
family: For any j ∈ Z and k ∈ Γj, we let children(j, k) =
{k′ ∈ Γj+1 : Cj+1,k′ ⊆ Cj,k}. Also, for x ∈ M, we denote by
Cj,x the unique cell at scale j that contains x (similar notation
like Pj,x,Φj,x,Ψj,x associated to Cj,x are used later).
Multiscale SVD. For every Cj,k we define the mean (in
R

D) by cj,k := E[x|x ∈ Cj,x] =
1

vol(Cj,k)

∫
Cj,k

x dvol(x) and the

covariance by covj,k = E[(x − cj,k)(x − cj,k)
∗|x ∈ Cj,k]. Let

the rank-d Singular Value Decomposition (SVD) of covj,k be
covj,k = Φj,kΣj,kΦ

∗
j,k, where Φj,k is orthonormal and Σ is diag-

onal.The subspace spanned by the columns of Φj,k, and then
translated to pass through cj,k, 〈Φj,k〉+cj,k, is an approximate
tangent space to M at location cj,k and scale 2−j. We think
of {Φj,k}k∈Γj

as a family of geometric scaling functions at
scale j. Let Pj,k be the associated affine projection

Pj,k(x) = Φj,kΦ
∗
j,k(x− cj,k) + cj,k, ∀ x ∈ Cj,k (1)

We define the coarse approximations, at scale j, to the mani-
fold M and to any point ∀x ∈ M, as follows:

Mj := ∪k∈Γj
Pj,k(Cj,k), xj ≡ PMj

(x) := Pj,x(x). (2)

Multiscale geometric wavelets. We introduce our
wavelet encoding of the difference betweenMj andMj+1, for
j < J . Fix x ∈ Cj+1,k′ ⊂ Cj,k. The difference xj+1 − xj is a
high-dimensional vector inRD, however it may be decomposed
into a sum of vectors in certain well-chosen low-dimensional
spaces, shared across multiple points, in a multiscale fashion.
We proceed as follows:

QMj+1
(x) := PMj+1

(x)− PMj
(x)

= xj+1 − Pj,k(xj+1) + Pj,k(xj+1)− Pj,k(x)

= (I − Φj,kΦ
∗
j,k)(xj+1 − cj,k) + Φj,kΦ

∗
j,k(xj+1 − x). (3)

Define the wavelet subspace and translation as

Wj+1,k′ := (I − Φj,kΦ
∗
j,k) 〈Φj+1,k′〉; (4)

wj+1,k′ := (I − Φj,kΦ
∗
j,k)(cj+1,k′ − cj,k). (5)

Clearly dimWj+1,k′ ≤ d. Let Ψj+1,k′ be an orthonormal basis
for Wj+1,k′ which we call a geometric wavelet basis. Then we
may rewrite (3) as

QMj+1
(x) = Ψj+1,k′Ψ

∗
j+1,k′(xj+1 − cj+1,k′) + wj+1,k′

− Φj,kΦ
∗
j,k(x− xj+1). (6)

The last term x − xj+1 can be closely approximated by

xJ − xj+1 =
∑J−1

l=j+1QMl+1
(x) as the finest scale J → +∞,

under general conditions. These operators are “detail” oper-
ators analogous to the wavelet projections in wavelet theory,
and satisfy, by construction, the crucial multiscale relationship

PMj+1
(x) = PMj

(x) +QMj+1
(x), ∀ x ∈ M. (7)

We have therefore constructed a multiscale family of projec-
tion operators PMj

(one for each node Cj,k) onto approximate
local tangent planes and detail projection operators QMj+1

(one for each edge) encoding the differences, collectively re-
ferred to as a GMRA structure. The cost of encoding the
GMRA structure is dominated by that of the scaling func-
tions {Φj,k}, which is O(dDε−

d
2), and the time complexity of

the algorithm is O(Dn log(n)) [2].

Theorem 1 (Geometric Wavelet Decomposition). Let
(M, g) be a C2 manifold of dimension d in R

D, and
{PMj

, QMj+1
} a GMRA. For any x ∈ M, there exists a

constant C = C(x) and a scale j0 = j0(reach(Bx(1))), such
that for any j ≥ j0,

‖x− PMj0
(x)−

j∑

l=j0+1

QMl
(x)‖ ≤ C · 2−2j. (8)

Geometric Wavelet Transforms (GWT). Given a
GMRA structure, we may compute a discrete Forward GWT
for a point x ∈ M that maps it to a sequence of wavelet
coefficient vectors:

qx = (qJ,x, qJ−1,x, . . . , q1,x, q0,x) ∈ R
d+

∑J
j=1 d

w
j,x (9)

where qj,x := Ψ∗
j,x(xj − cj,x), and dwj,x := dimWj,x ≤ d. Note

that, for a fixed precision ε > 0, qx has a maximum possible
length (1 + 1

2 log2
1
ε
)d, which is independent of D and nearly

optimal in d [3]. On the other hand, we may easily compute
the wavelets at all scales using the GMRA structure and the
wavelet coefficients, by a discrete Inverse GWT:

QMJ
(x) = ΨJ,xqJ,x + wJ,x; (10)

QMj
(x) = Ψj,xqj,x + wj,x − Φj−1,xΦ

∗
j−1,x

∑

`>j

QM`
(x) (11)

for j gradually decreasing from J − 1 to 1. The finest approx-
imation of x is x̂J = x0 +

∑
j≥1QMj

(x).

Experiments
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y = − 1.8*x + 0.12

Figure 1. We sample 10, 000 points from a 2-D Oscillating2DWave embedded in R
50

and compute the GWT of the data. Bottom left figure shows the wavelet coefficients

arranged into the natural tree: The x-axis indexes the points, and the y axis indexes the

scales from coarsest (1) to finest (11)
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Figure 2. We apply the GMRA to 2414 (cropped) face images from 38 human subjects

in fixed frontal pose under varying illumination angles. Bottom row shows approxima-

tions of a fixed point (image) and corresponding dictionary elements used
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