Activity Analysis for Operator Overloading Automatic Differentiation

Automatic Differentiation of Leadership-Class Applications

Drew Wicke Sri Hari Krishna Narayanan, Paul D. Hovland
York College of Pennsylvania Argonne National Laboratory
441 Country Club Road, York, PA 17403 9700 S Cass Ave, Argonne, 1L 60439
Abstract

Automatic Differentiation (AD) automatically performs the differentiation of models expressed
in a high level programming language. Several DOE-sponsored tools implement AD in the source-
to-source transformation approach and the operator overloading approach. Operator overloading
AD exploits the operator overloading features of the programming language that the model is
expressed in. Runtime libraries implement methods that overload operators such as +, —, %, / and
mathematical functions such as sin and sqrt to compute derivative values along with elementary
computation. Source-to-source transformation generates an output code that contains the original
input code as well additional code to compute derivatives. It is typically faster than operator
overloading AD as it can use compiler analysis such as activity analysis to optimize the generated
code. Operator overloading AD is more robust as the tool does not have to handle esoteric syntactic
and semantic programming language features itself.

Often, AD users are interested in computing the derivatives of a subset of the output variables
in the model with respect to a subset of the input variables (known as dependent and independent
variables respectively). Depending on the role a temporary variable plays in the model source
code, it may need to be involved in the computation of derivatives as well. In operator overloading
AD, such variables usually are identified manually using a compiler that detects type mismatch.
The overheads associated with operator overloading are exacerbated by the overestimation of such
variables.

Activity analysis is a two-step method to accurately identify those temporary variables that
need to be involved in derivative computation. First, all variables whose value is affected by
independent variables are detected. Second, all variables that affect the value of a dependent
variable are detected. Variables that are detected in both steps are considered to be active.

We have developed a framework based on the activity analysis implementation within Open-
Analysis [I] to detect active variables within code that was used as input to Sacado - an operator
overloading AD tool [3]. The types of variables that were determined to be active were changed to
be of Sacado Active Type. The parsing of input code and type change was performed using the
ROSE compiler framework and the useOA-ROSE interface [2, 4]. Preliminary experiments show
that our tool is able to accurately distinguish those variables that must be active from those that
should not.

References

[1] OpenAnalysis Web Page. http://openanalysis.berlios.de/.
[2] ROSE Web Page. http://rosecompiler.org/.

[3] Sacado Web Page. http://trilinos.sandia.gov/packages/docs/dev/packages/sacado/doc/html/
index.html.

[4] UseOA-ROSE Web Page. http://developer.berlios.de/projects/useoa-rose/.


http://openanalysis.berlios.de/
http://rosecompiler.org/
http://trilinos.sandia.gov/packages/docs/dev/packages/sacado/doc/html/index.html
http://trilinos.sandia.gov/packages/docs/dev/packages/sacado/doc/html/index.html
http://developer.berlios.de/projects/useoa-rose/

