
Discretization and Solver Infrastructure for Ice Sheet Simulation

Scalable Ice-sheet Solvers and Infrastructure for Petascale, High-resolution, Unstructured
Simulations (SISIPHUS)

Jed Brown
Mathematics and Computer Science Division

Argonne National Laboratory
9700 S Cass Ave
Argonne, IL 60439

Abstract

The simulation of ice sheets in changing climate, especially the stability and sensitivity of
grounding lines, is essential for the accurate prediction of sea level rise. Indeed, the last IPCC
assessment report held this process accountable for the largest uncertainty in current forecasts.
The system is modeled as a non-Newtonian two-phase free surface flow with various boundary
conditions including frictional and deformational contact.

These equations exhibit many properties that make their numerical solution difficult, including
variable coefficients, mesh- and physics-induced anisotropy, indefiniteness (incompressibility), and
transport-dominated aspects (heat and tracers). To control the code complexity and to maintain
tests for correctness, we introduce a dynamic, high-level Python library for declaring the physics in
a form used to generate the computational kernels for the various blocks of residuals and lineariza-
tions. This declarative programming simplifies the use of high-order discretizations preconditioned
by low-order approximations (the high order operator is applied in unassembled form).

Since memory bandwidth is so often a central concern when solving PDE, we change the rep-
resentation of certain matrices to reduce the bandwidth requirements and increase the arithmetic
intensity. This approach significantly improves the utilization of modern hardware, such that high
order elements become an efficient and practical option. The key to the efficiency of these rep-
resentations is the availability of tensor-product structure, such that many values/derivatives can
be mapped to quadrature points in an efficient manner. Our new API for managing this tensor
product structure is shown to be competitive with or faster than several widely-used finite element
libraries, even for lowest order elements. This API provides far more run-time algorithmic flexibility
without a performance penalty and offers improvements in memory utilization and asymptotics, so
it may be considered superior for many purposes.

In order to reasonably maintain the software for multi-physics problems and problems with
different discretizations features, we have enhanced the multiphysics coupling and matrix assembly
API for PETSc to allow each single-physics component to assemble directly into nested matrix
formats for use with field-split preconditioning, or, with a run-time option, monolithic matrices can
be assembled for use with coupled multigrid and domain decomposition preconditioners.

These tools, combined with the recently added IMEX time integrators, form a powerful and
mathematically clean, yet still maintainable, approach to multi-physics coupling and associated
implicit solves.


