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Abstract

Electrical power grids in steady state can be modeled by nonlinear equations that describe the
physical laws governing power flows (the “AC equations”), together with prescribed demands at
some nodes and power generation at others. When a fault occurs on a grid (in the form of a severed
power line, for example), the power flows in the grid change, possibly in a detrimental way that
causes other lines to fail. This process can result in a cascade of failures and may possibly lead to
a widespread blackout, in which demand cannot be met at many of the nodes.

One way to assess the vulnerability of a grid to faults — including faults caused by a malicious
attacker — is to identify those lines whose removal would cause the maximum disruption. A
natural model for vulnerability analysis is bilevel nonlinear optimization, in which the lower-level
problem captures the disruption to the grid arising from a given set of faults, while the variables
in the upper-level problem model the faults. The AC power-flow equations appear as constraints
in the lower-level program, possibly together with limits on power flows. Essentially, the bilevel
optimization problem is to find the set of faults that maximizes the disruption to the grid, subject
to some “budget” constraint. The budget is used to map the sensitivity of the grid to different
levels of damage, or, in the case of a malicious attacker, the power of the attacker.

Previous approaches to this problem have replaced the lower-level problem with a set of station-
arity conditions, thus reformulating the bilevel problem as a fairly standard nonlinear optimization
problem. Such formulations have the disadvantage of allowing spurious solutions of the AC power
flow equations into the model, giving a misleading picture of the effects of a prescribed set of faults
on the grid. We propose instead to retain the bilevel structure, solving the lower-level problem
with “black-box” techniques that more reliably rule out spurious solutions.

We describe two techniques for quantifying the disruption. One measures the deviation of
the voltage magnitudes at the network nodes from their reference value of 1. (Greater deviation
indicates a less stable network.) The second technique measures the total amount of load that
needs to be shed at demand nodes in order to restore feasibility to the grid. This quantity can be
obtained by solving a “least £1” solution of the AC power flow equations.

In the upper-level problem, the variables that quantify the faults can be simply binary variables
that indicates whether a line is severed. Instead of these discrete variables, we use continuous
variables that represent changes to impedances of each transmission line. The upper-level problem
maximizes our chosen metric of disruption subject to total increase in impedance staying within
some bound. The impedance increases serve as proxies for the binary variables; those lines on which
increased impedance leads to severe disruption are the lines that make the grid most vulnerable.

Many algorithmic techniques from optimization are needed to solve the resulting formulations.
We describe the use of Frank-Wolfe methods, gradient projection, partial gradient methods, and
finite differences in solving the upper-level problem. For the lower-level problem, we describe the
use of trust-region methods for the least-¢; formulation, along with enhanced Newton methods, ap-
proximate Newton methods, homotopy techniques, and the semidefinite programming formulations
introduced by Lavaei and Low. Computational results of grids with over 15000 nodes and 23000
lines will be presented.



