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Given a mapping F : Rn → Rn and a set K ⊆ Rn, the variational inequality problem (VIs),
denoted by VI(K, F ), requires an x ∈ K such that (y − x)T F (x) ≥ 0 for all x ∈ K. VIs have been
employed in the context of a broad class of optimization and equilibrium problems. Yet, in settings
complicated by uncertainty, the deterministic problem does not suffice; instead, given a probability
space (Ω,F , P), a random variable ξ : Ω → Rd and a random map F : Rn×Rd → Rn, the stochastic
variational inequality problem, denoted by SVI(K, F ), requires an x ∈ K such that

(y − x)T E[F (x; ξ(ω))] ≥ 0, ∀y ∈ K, (1)

where E[F (x; ξ)] , (E[Fi(x; ξ)])n
i=1. Note that SVI(K, F ) can capture the solution sets of static

stochastic convex optimizaton problems and Nash games in which the payoffs contain expectations.
We focus on developing schemes for computing solutions of such problems in a variety of settings:
Regularized adaptive steplength stochastic approximation schemes: Stochastic approxi-
mation techniques have been an extremely popular choice of methods in contending with expecta-
tions in stochastic optimization problems. Recently, such avenues have been extended to strongly
monotone stochastic variational inequalities; Recall that SVI(K, F ) is strongly monotone if there
exists an η > 0 such that (y − x)T (E[F (x; ξ)] − E[F (y; ξ)] ≥ η‖x − y‖2 for all x, y ∈ K. In such a
setting, given an x0 ∈ K, a stochastic approximation method constructs the following sequence:

xk+1 := ΠK(xk − γkF (xk; ξk)), k ≥ 1, (2)

where ΠK(y) is the projection of y on K. If
∑∞

k=0 γ2
k < ∞ and

∑∞
k=0 γk = ∞, the xk → x∗, the

unique solution of SVI(K, F ), almost surely. We consider two important questions in this setting.
First, can the sequence γk be chosen adaptively, in accordance with problem parameters (such as
monotonicity constant η, Lipschitz constant L, etc.)? This is motivated by noting that traditional
choices of the sequence (such as γk = θ/k require prescription of θ) and performance can vary by
several orders of magnitude with choices of θ. Instead, we develop the following update rule for γk

γk+1 = γk

(
1− ηγk

2

)
, k ≥ 0, (3)

based on minimizing an upper bound on error. This scheme leads to almost-sure convergence
of {xk}, adapts to problem parameters and shows good performance across multiple problems.
However, such a scheme relies on the strong monotonicity of the mapping, an assumption that is
often stringent, and leads us to a regularized scheme for monotone problems:

xk+1 := ΠK(xk − γk(F (xk; ξk) + εkxk)), k ≥ 1, (4)

where {εk} is a decreasing sequence of positive scalars, inspired by Tikhonov regularization methods.
We further extend (3) to regularized regimes where εk and γk are updated after every iteration.
Hybrid cutting-plane projection schemes: Next, we consider problems that arise from recourse-
based stochastic equilibrium problems where feasibility is enforced in an almost-sure sense. Nat-
urally, computing projections, while challenging, can be achieved in a scalable fashion via dual-
decomposition methods for stochastic convex programs. Together with an upper-level gradient
scheme, this method forms a scalable approach for solving cartesian stochastic variational inequali-
ties. Unfortunately, in many game-theoretic settings, such an avenue is not applicable since strategy
sets may be be coupled (as in the presence of network constraints). Through relaxation, we con-
struct a scheme that operates in the primal and dual (corresponding to the shared constraints) and
provide error bounds for the associated dual and inexact dual schemes (bounded complexity).


