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Abstract

Data sets are often modeled as point clouds in R
D, for D large, but having some interesting

low-dimensional structure, for example that of a d-dimensional manifold M, with d ≪ D. When
M is simply a linear subspace, one may exploit this assumption for encoding efficiently the data
by projecting onto a dictionary of d vectors in R

D (found by SVD), at a cost (n + D)d for n

data points. When M is nonlinear, there are no “explicit” constructions of dictionaries that
achieve a similar efficiency: typically one uses either random dictionaries, or dictionaries obtained
by black-box optimization. Such constructions, which typically cast the sparsity requirement as
an optimization problem, suffer from many local minima and lack of theoretical guarantees. In
this paper we construct data-dependent dictionaries based on a geometric multiresolution analysis
(GMRA) of the data, inspired by multiscale techniques in geometric measure theory, to remedy
the above deficiencies.
Multiscale decomposition. We start by constructing a multiscale nested partition of M into
dyadic cells {Cj,k}k∈Γj ,0≤j≤J in R

D. There is a natural tree T associated to the family: For any
j ∈ Z and k ∈ Γj, we let children(j, k) =

{

k′ ∈ Γj+1 : Cj+1,k′ ⊆ Cj,k

}

.
Multiscale SVD. For every Cj,k we define the mean (in R

D) by cj,k := E[x|x ∈ Cj,x] and the
covariance by covj,k = E[(x − cj,k)(x − cj,k)

∗|x ∈ Cj,k]. Let the rank-d SVD of covj,k be covj,k =
Φj,kΣj,kΦ

∗
j,k. The subspace spanned by the columns of Φj,k, and then translated to pass through

cj,k, 〈Φj,k〉+ cj,k, is an approximate tangent space to M at location cj,k and scale 2−j. We define
the coarse approximations, at scale j, to the manifold M and to any point x ∈ M, as follows:

Mj := ∪k∈Γj
Pj,k(Cj,k), xj := Pj,k(x), x ∈ Cj,k, (1)

where Pj,k is the associated affine projection to Cj,k.
Multiscale geometric wavelets. We can then introduce our wavelet encoding of the differ-
ence between Mj and Mj+1, for j < J . These operators are low-dimensional “detail” operators
analogous to the wavelet projections in wavelet theory, and satisfy, by construction,

PMj+1
(x) = PMj

(x) +QMj+1
(x), ∀x ∈ M. (2)

Geometric Wavelet Transforms (GWT). Given a GMRA structure, we may compute a discrete
Forward GWT for a point x ∈ M that maps it to a sequence of geometric wavelet coefficient vectors:

qx = (qJ,x, qJ−1,x, . . . , q1,x, q0,x) (3)

where qj,x := Ψ∗
j,x(xj − cj,x). Note that, for a fixed precision ǫ > 0, qx has a maximum possible

length (1 + 1

2
log2

1

ǫ
)d, which is independent of D and nearly optimal in d.

Sparsity The geometric wavelet dictionary may be constructed efficiently and is associated with
efficient direct and inverse transforms. Depending on the geometric regularity of the data, it
provides sparse (compressible) representations for data points.


