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Abstract

Tensors have found application in a variety of fields, ranging from chemometrics to signal
processing and beyond. In this presentation, we consider the problem of multilinear modeling of
sparse data, specifically sparse count data. This type of data arises in a variety of contexts. For
example, we may have data on computer communications (such as tracking communications in a
large-scale simulation over discrete time intervals, perhaps even taking into account the message
labels) or even person-to-person communications (such as emails tracked over time). Our goal is
to develop a descriptive tensor model of such data.

Let X represent a 3-way data tensor of size I×J ×K. (Our methods apply to arbitrary N -way
models, but we discuss 3-way here for simplicity of notation.) As the data is strictly nonnegative,
we will restrict the model to be nonnegative as well. Thus, we are interested in R-component model
M of the form

M =
R∑

r=1

λr ar ◦ br ◦ cr,

where λr is a positive scalar, ar, br, and cr denote the rth columns of nonnegative matrices of
size I × R, J × R, and K × R, respectively. The notation ◦ denotes the outer product so that
mijk =

∑
r λr air bjr ckr.

In many applications, we fit the model to the data using a least squares fit, which implicitly
assumes that the random variation in the tensor data follows a Gaussian distribution. For count
data, however, the random variation is better described via a Poission distribution. In other words,
we assume

xijk ∼ Poisson(mijk)

rather than xijk ∼ N(mijk, σ
2
ijk). Correspondingly, we fit the data using the negative log-likelihood

cost function rather than least squares. So, the optimal model will minimize∑
ijk

mijk − xijk logmijk.

The difficulty of this approach is fitting this more complex objective function. We present a novel
alternating method that solves the subproblems via a majorization-minimization (MM) algorithm.
Our approach generalizes the Lee-Seung multiplicative updates (even in the matrix case). The ad-
vantage of our approach is that we can prove convergence under conditions that are generically (i.e.,
with probability one) satisfied. We also present numerical results demonstrating the effectiveness
of such factorizations as well as the interpretability of the results.
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