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Abstract

“Standard” algorithms for analyzing dynamical systems include initial value solvers, boundary
value solvers and continuation methods. The continuation methods use root finders to track special
solutions like equilibria and locate their bifurcations. Multiple time scales introduce difficulties for
these methods, some of which have been studied intensively like the integration of stiff systems.
This lecture will describe dynamical problems that arise in studying chemical and biological os-
cillations and survey our current numerical capabilities in analyzing models of dynamical systems
with multiple time scales.

The Belousov-Zhabotinsky (BZ) reaction has been the most studied oscillating chemical re-
action, both for its pattern forming properties in thin layers and for its complex oscillations in
stirred rank reactors. Efforts that began in the 1970s to model these complex oscillations were
only partially successful, in large part due to the difficulty of analyzing the models. The thesis of
Chris Scheper (Cornell 2011) revisits this problem, comparing a four dimensional model proposed
by Gyorgi and Field with many experimental results. Scheper’s analysis of this model encounters
new problems in the numerical analysis of multiple time scale systems.

Models for the electrical activity of neurons and neuronal networks take the form of nonlinear
electrical circuits. Membrane channels function as nonlinear resistors whose conductance depends
upon quantities such as membrane voltage, ion concentration or ligand concentration. The time
scales for gating of the channels varies over several orders of magnitude: the fastest relevant time
scale is about one millisecond and is associated with the basic phenomenon of action potentials.
The slowest time scales are days or weeks, an example being modifications of synaptic strengths
that have long been associated with memory formation. Action potentials are a key mechanism for
the transmission of information in neural networks and between nerves and muscles. The complex
oscillations of these systems represent their biological function directly through the frequency and
timing of action potentials. We shall illustrate how advances in geometric singular perturbation
theory and associated algorithms have enabled the analysis of neuronal models and describe some
of the frontiers of this vibrant research area.

Slow manifolds are (locally) invariant subsets along which the speed of trajectories is commen-
surate with the slow time scale in slow-fast systems. In many systems, trajectories spend most
of their time on attracting slow manifolds - making rapid transitions from one slow manifold to
another where normal hyperbolicity of the slow manifold holds. Foundational theory for normally
hyperbolic slow manifolds will be described along with numerical methods for computing them.
The need for better algorithms in this area will be emphasized.

Bifurcation analysis of dynamical models maps their parameter spaces, showing which types of
asymptotic behaviors are possible for different parameters. Multiple time scales give rise to new
types of bifurcations, and this has long been a focus of our research. In particular, this lecture
will illustrate how unstable slow manifolds and the phenomenon of canards give rise to enigmatic
behaviors in simulations. The lecture will also illustrate how tangencies of invariant manifolds yield
bifurcation boundaries for complex dynamical behaviors like mixed mode oscillations.


